
The ultimate guide to building modern CSS layouts with flexbox

UNRAVELING

FLEXBOX

Landon Schropp

Version	1.4

Copyright	©	2016	Landon	Schropp	LLC

All	Rights	Reserved

INTRODUCTION

Have	you	ever	spent	hours	agonizing	over	a	CSS	layout	that

just	wouldn't	work?	Have	you	struggled	with	columns,

vertical	centering,	floats	or	inline	displays?	Have	you	even,

gasp,	given	up	and	used	tables	for	your	layouts?

It’s	time	to	say	goodbye	to	all	that	pain.	Flexbox	is	a	CSS

layout	specification	that	makes	it	easy	to	construct	dynamic

layouts.	It's	a	set	of	tools	that	gives	you	more	flexibility	and

power	with	CSS	than	you've	ever	had	before.	With	flexbox,

vertical	centering,	same-height	columns,	reordering,	and

direction	agnosticism	are	a	piece	of	cake.

There's	a	popular	myth	floating	around	that	flexbox	isn't

ready	for	prime	time	yet.	Wrong!	93%	of	people	are	now

running	a	browser	that	supports	flexbox,	and	that

number	is	growing	every	day.	That's	better	than	the

support	for	the	HTML5	<video>	element!	You	can	use

flexbox	today	and	it	will	work	almost	everywhere!

This	book	is	your	guide	to	mastering	flexbox.	It	will	teach

you	the	ins	and	outs	of	all	the	properties	and	how	they

interact	together.	More	importantly,	it	will	show	you	how	to

apply	them	to	real	layouts.

What's	in	the	Book?

This	book	is	about	teaching	you	to	use	flexbox	in	the	real

world.	The	examples	in	each	chapter	are	as	true	to	life	as	I

could	make	them.	Many	of	them	are	layouts	I've	previously

built	for	paying	clients.	You	can	use	what	you	learn	here

directly	in	your	projects.

Here's	the	breakdown:

Chapter	1:	Getting	Dicey

In	this	chapter,	you'll	build	your	very	first	layout,	the	faces	of

dice!

Chapter	2:	Crafting	Twelve-Column	Layouts

Learn	how	you	can	use	flexbox	to	build	twelve-column

layouts	you've	always	needed	a	grid	system	for	in	the	past.

Chapter	3:	Building	a	Video	Player

Build	a	video	player	with	flexbox	that'll	make	YouTube's

developers	jealous.

Chapter	4:	Say	Goodbye	to	Vendor	Prefixes

I’ll	show	you	how	to	set	up	your	environment	so	you	can

ignore	all	vendor	prefixes.	You’ll	write	your	code	once,	and	it

will	work	everywhere!

Chapter	5:	Breaking	Free	From	Twelve-Column

Layouts

You'll	go	beyond	twelve-columns	and	build	a	cool	calendar

layout	in	the	process.

Chapter	6:	Perfect	Pricing

Create	a	pricing	layout	that	will	feel	right	at	home	on	any

marketing	site.

Chapter	7:	Flexbox	Forms

Flexbox	isn't	just	for	full-page	layouts!	In	this	chapter,	you'll

learn	how	to	use	flexbox	to	build	small,	reusable	form

controls.

Chapter	8:	Responsive	Design

Learn	how	to	harness	flexbox	for	responsive	layouts	that

work	great	on	both	desktop	and	mobile.

Chapter	9:	Wrapping	Like	a	Boss

Say	goodbye	to	floats	and	clearfixes.	You'll	be	using	flexbox's

fantastic	wrapping	controls	from	now	on.

Chapter	10:	Progressive	Enhancement

You'll	learn	how	to	take	advantage	of	the	flexbox	goodness

and	still	support	Internet	Explorer	9	and	below!

Chapter	11:	Ordering

The	order	of	the	elements	on	your	screen	doesn't	have	to

match	the	order	in	the	HTML.	This	chapter	will	show	you

how	to	reorder	these	elements	with	flexbox.

Chapter	12:	Cross-Browser	Testing

You'll	learn	how	to	test	your	code	across	every	major	browser

and	device.

Chapter	13:	How	to	Write	a	Grid	System

Have	you	ever	wondered	how	grid	systems	like	960gs	work?

In	this	chapter	you'll	create	your	very	own	flexbox	grid

system.

Chapter	14:	Minesweeper

You'll	use	everything	you've	learned	in	this	book	to	build	an

awesome	Minesweeper	layout!

When	a	book	contains	too	many	details,	it's	difficult	to	catch

the	important	points.	In	this	book	I've	omitted	styles	that

don't	apply	to	flexbox,	such	as	typography,	colors	and

borders.	If	you'd	like	to	see	all	of	the	styles	for	a	chapter,

take	a	look	at	the	code	examples.

Code	Examples

The	examples	for	this	book	are	powered	by	Middleman,	a

static	site	generator	that	makes	it	easy	to	build	HTML	and

CSS	websites.	There	are	several	ways	for	you	to	access	the

example	code:

The	last	option	is	trickier	than	the	first	three,	so	I'd	only

recommend	it	if	you're	feeling	ambitious.	If	you're	a	Mac

user,	I've	recorded	a	video	to	make	the	installation	process

easier	for	you.	If	you're	a	Windows	user,	there's	currently	a

bug	in	Middleman	preventing	you	from	running	the

examples.

The	first	step	is	to	install	the	project's	dependencies:

View	the	source	on	GitHub.•

Download	the	compiled	build.•

Browse	the	hosted	examples.•

Run	the	example	server	yourself.•

Ruby•

Git•

NodeJS•

Bundler•

https://middlemanapp.com/
https://github.com/LandonSchropp/unraveling_flexbox
https://unravelingflexbox.com/downloads/build
https://example.unravelingflexbox.com
https://youtu.be/IuDtUXXXJl8
https://www.ruby-lang.org/en/documentation/installation/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://nodejs.org/en/download/
http://bundler.io/

Next,	clone	the	project's	Git	repository	and	switch	into	that

directory.

git	clone	"https://github.com/"\

"LandonSchropp/unraveling_flexbox"

cd	unraveling_flexbox

Use	Bundler	to	install	the	project's	gem	dependencies.

bundle	install

Finally,	start	up	the	Middleman	server.

bundle	exec	middleman

If	everything's	set	up	correctly,	you	can	navigate	to

http://localhost:4567	to	view	the	examples.

Acknowledgements

I'd	like	to	thank	my	wife,	Danielle,	for	all	her	support	in

writing	this	book.	I've	spent	too	many	evenings	hunched

over	my	computer	instead	of	hanging	out	with	her.	Not	only

did	she	tolerate	my	insanity,	but	she	gave	a	large	portion	of

her	own	time	to	editing	this	book.	Love	you	Danielle!

http://localhost:4567

I'd	also	like	to	thank	my	beta	readers,	especially	Joshua,

Darrin,	Andrew,	Duc	and	Christine.	You	guys	made	a	huge

difference	in	the	quality	of	this	book,	and	I	really	appreciate

it!

Enough	Chitchat

Let's	dive	in.	Welcome	to	Unraveling	Flexbox!

CHAPTER 1

Getting Dicey

The	six	dice	faces

The	best	way	to	learn	flexbox	is	to	roll	up	your	sleeves	and

write	some	code.	In	this	chapter,	I’ll	walk	you	through	your

very	first	flexbox	layout:	the	faces	of	dice!

The	First	Face

A	standard	playing	die	consists	of	six	faces	(sides).	Each	face

has	a	number	of	pips	(dots)	which	determine	the	value	of	the

side.	The	first	side	consists	of	a	single	pip	in	the	center	of	the

face.

Let's	start	by	writing	the	HTML	for	the	first	face.

<div	class="first-face">

		

</div>

To	make	life	a	little	easier,	I’ve	added	the	basic	styles	for	the

faces	and	the	pips.	Here's	what	it	looks	like:

The	first	step	is	to	tell	the	browser	to	make	the	face	a	flexbox

container.

.first-face	{

		display:	flex;

}

It	doesn't	look	any	different,	but	there's	a	lot	going	on	under

the	hood.

The	flexbox	container's	main	axis	and	cross	axis

The	first-face	container	now	has	a	horizontal	main	axis.

The	main	axis	of	a	flex	container	can	be	horizontal	or

vertical.	The	default	is	horizontal.	If	we	added	another	pip	to

the	face,	it	would	show	up	to	the	right	of	the	first	one.	The

container	also	has	a	vertical	cross	axis.	The	cross	axis	is

always	perpendicular	to	the	main	axis.

The	justify-content	property	defines	the	alignment	along

the	main	axis.	Since	we	want	to	center	the	pip	along	the

main	axis,	we'll	use	the	center	value.

.first-face	{

		display:	flex;

		justify-content:	center;

}

All	right!	Since	the	main	axis	is	horizontal,	the	pip	is	now

centered	in	the	parent	element.

The	align-items	property	dictates	how	the	items	are	laid

out	along	the	cross	axis.	Because	we	want	the	pip	to	center

along	this	axis,	use	the	center	value	here	too.

.first-face	{

		display:	flex;

		justify-content:	center;

		align-items:	center;

}

And	just	like	that,	the	pip	is	centered!	Horizontally	and

Vertically	centering	an	element	was	one	of	the	hardest	tricks

to	accomplish	in	CSS	before	flexbox,	and	you've	done	it	in	a

few	lines	of	code!

Getting	Trickier

On	the	second	face	of	a	die,	the	first	pip	is	in	the	top	left

corner	and	the	second	is	in	the	bottom	right.	That's	also

pretty	easy	to	do	with	flexbox!

Again,	start	with	the	markup	and	the	basic	CSS.

<div	class="second-face">

		

		

</div>

.second-face	{

		display:	flex;

}

Now	you	have	two	pips	right	next	to	each	other.	This	time

around,	the	pips	should	be	on	opposite	sides	of	the	face.

There's	a	value	for	justify-content	that	will	let	us	do	just

that:	space-between.

The	space-between	value	evenly	fills	the	space	between	flex

items.	Since	there	are	only	two	pips,	this	pushes	them	away

from	each	other.

.second-face	{

		display:	flex;

		justify-content:	space-between;

}

Here's	where	we	run	into	a	problem.	Unlike	before,	you	can't

set	align-items	because	it	will	affect	both	pips.	Luckily,

flexbox	includes	align-self.	This	handy	property	lets	you

align	individual	items	in	a	flex	container	along	the	cross

axis!	The	value	you	want	for	this	property	is	flex-end.

.second-face	{

		display:	flex;

		justify-content:	space-between;

}

.second-face	.pip:nth-of-type(2)	{

		align-self:	flex-end;

}

Looks	good!

Horizontal	and	Vertical	Nesting

Let's	skip	the	third	face	and	tackle	the	fourth.	This	one	is	a

little	trickier	than	the	others	because	we	need	to	support	two

columns,	each	with	two	pips.

There	are	two	things	about	flexbox	that	will	save	you	here:

flex	containers	can	have	vertical	or	horizontal	content,	and

flex	containers	can	be	nested.

Unlike	before,	the	markup	will	now	include	columns.

<div	class="fourth-face">

		<div	class="column">

				

				

		</div>

		<div	class="column">

				

				

		</div>

</div>

Since	you	want	the	two	columns	to	be	on	opposite	sides,	go

ahead	and	use	justify-content:	space-between	like	you

did	before.

.fourth-face	{

		display:	flex;

		justify-content:	space-between;

}

Next,	you	need	to	make	the	columns	flex	containers.	It	might

seem	like	they	already	are,	but	remember	that	you	haven't

set	display:	flex	yet.	You	can	use	the	flex-direction

property	to	to	set	the	direction	of	the	main	axis	to	column.

.fourth-face	{

		display:	flex;

		justify-content:	space-between;

}

.fourth-face	.column	{

		display:	flex;

		flex-direction:	column;

}

It	doesn't	look	any	different,	but	the	columns	are	now	flex

containers.	Notice	how	you	stuck	a	flex	container	directly

inside	another	flex	container?	That's	okay!	Flexbox	doesn't

care	if	the	containers	are	nested.

The	final	step	is	to	space	the	pips	apart	from	each	other.

Since	the	main	axis	for	the	columns	is	vertical,	you	can	use

justify-content	again.

.fourth-face	{

		display:	flex;

		justify-content:	space-between;

}

.fourth-face	.column	{

		display:	flex;

		flex-direction:	column;

		justify-content:	space-between;

}

Note:	This	face	could	have	been	built	without	columns	by	using

wrapping.	I'll	cover	wrapping	in	more	detail	in	Chapter	9.

Wrapping	Up

Woohoo!	Three	faces	down	and	three	to	go.	At	this	point,

you	have	everything	you	need	to	build	the	other	three.	Give

it	a	shot!	When	you're	done,	take	a	look	at	the	code	examples

for	the	answers.

CHAPTER 2

Crafting Twelve-Column Layouts

In	a	twelve-column	layout,	the	page	is	broken	apart	into

twelve	invisible	columns.	These	columns	have	small

amounts	of	space	between	them,	called	gutters.	The	page	is

divided	into	rows,	and	the	containers	in	the	rows	take	up	a

certain	number	of	columns.

A	twelve-column	grid	with	columns	and	gutters

If	you	look	for	them,	you'll	start	to	see	twelve-column

layouts	everywhere.	Take	a	look	at	these	landing	pages	from

Heroku,	ChowNow	and	Square.	Notice	how	the	sections	are

broken	up	into	halves,	thirds	and	fourths?

In	this	chapter,	I'll	show	you	how	to	use	the	flex-grow,

flex-shrink	and	flex-basis	properties	to	build	twelve-

column	layouts,	without	the	need	for	a	library!

https://www.heroku.com/
https://www.chownow.com/
https://squareup.com/

Examples	of	twelve-column	layouts	from	Heroku,	ChowNow	and	Square

Setting	Up	the	Container

Let's	say	you	want	each	of	the	<div>	elements	in	the

following	HTML	to	take	up	a	third	of	the	<section>.

<section>

		<div	class="column">First</div>

		<div	class="column">Second</div>

		<div	class="column">Third</div>

</section>

By	default,	the	<section>	element	takes	up	100%	of	the

width	of	the	screen.	Start	by	limiting	its	width	to	740	pixels.

While	you're	at	it,	also	add	gutters	around	the	columns.

section	{

		max-width:	740px;

		margin:	0	auto;

}

.column	{

		margin:	10px;

}

Pop	open	the	code	examples	and	try	dragging	your	browser

window	until	it's	smaller	than	740	pixels.	Notice	how	the

<section>	gets	smaller	as	the	screen	shrinks,	but	stays	fixed

when	the	screen	is	larger	than	740	pixels?

Flexin'	It	Up

Make	the	<section>	a	flex	container	like	you	did	in

Chapter	1.

section	{

		max-width:	740px;

		margin:	0	auto;

		display:	flex;

}

By	default,	flexbox	sets	the	widths	of	the	columns	to	the	size

of	their	content.	You	can	change	this	behavior	by	using	the

flex-grow	and	flex-shrink	properties.

The	flex-grow	property	tells	flexbox	how	to	grow	the	item

to	take	up	additional	space,	if	necessary.	flex-shrink	tells

flexbox	how	to	shrink	when	necessary.	Since	we	want	the

columns	to	behave	the	same	while	growing	and	shrinking,

set	both	of	these	properties	to	1.

.column	{

		margin:	10px;

		flex-grow:	1;

		flex-shrink:	1;

}

Woohoo!	The	flexbox	container	now	fills	up	three	columns.

The	values	for	flex-grow	and	flex-shrink	are	proportional,

meaning	they	change	relative	to	other	items	in	the	flex

container.	Flexbox	adds	the	values	for	the	properties	and

then	divides	each	column's	value	by	that	sum.	So	each

column	takes	up	1	÷	(1	+	1	+	1),	or	⅓	of	the	total	space.

What	happens	if	one	of	the	columns	has	a	different	value?

.column:first-of-type	{

		flex-grow:	2;

		flex-shrink:	2;

}

The	first	column	takes	up	the	same	amount	of	space	as	the

other	two.	That's	because	the	values	add	up	to	4,	so	the	first

column	is:

2	÷	(2	+	1	+	1)	=	½

The	other	two	are:

1	÷	(2	+	1	+	1)	=	¼

All	About	That	Basis

If	you	look	closely	at	the	last	example,	you'll	notice	that	the

first	column	doesn't	quite	cover	half	of	the	container.	If	you

add	more	content	to	the	third	column,	you	can	really	see	the

problem.

<section>

		<div	class="column">First</div>

		<div	class="column">Second</div>

		<div	class="column">

				The	third	column,	with	more	content	than

				before!

		</div>

</section>

What's	going	on?	Why	is	flexbox	not	flexing	correctly?

It	turns	out	flexbox	doesn't	distribute	space	evenly	to	each

column.	It	figures	out	how	much	space	each	column	starts

with,	specified	by	the	flex-basis	property.	Then,	the

remaining	space	is	distributed	using	the	flex-grow	and

flex-shrink	properties.

This	might	seem	confusing,	and	that's	because	it	is.	The	way

this	stuff	adds	up	is	really	damn	complicated,	but	don't

worry,	you	don't	need	to	understand	the	nuances	to	use

flexbox.

Since	we	don't	care	about	how	much	space	the	content

originally	takes	up,	set	flex-basis	to	0.

http://chriswrightdesign.com/experiments/flexbox-adventures/

.column	{

		margin:	10px;

		flex-grow:	1;

		flex-shrink:	1;

		flex-basis:	0;

}

.column:first-of-type	{

		flex-grow:	2;

		flex-shrink:	2;

		flex-basis:	0;

}

Tah-dah!	It	works!	Well,	kind	of—there's	one	last	thing	to

fix.

More	Flex	Basis

If	you	add	another	section	below	the	first,	you	can	see	the

problem.

<section>

		<div	class="column">First</div>

		<div	class="column">Second</div>

		<div	class="column">Third</div>

</section>

<section>

		<div	class="column">First</div>

		<div	class="column">Second</div>

		<div	class="column">Third</div>

		<div	class="column">Fourth</div>

</section>

.column	{

		margin:	10px;

		flex-grow:	1;

		flex-shrink:	1;

		flex-basis:	0;

}

section:first-of-type	.column:first-of-type	{

		flex-grow:	2;

		flex-shrink:	2;

		flex-basis:	0;

}

Why	don't	the	columns	line	up?	It's	because	flexbox	includes

the	padding,	border	and	margin	in	the	basis	when	it

calculates	how	big	the	item	should	be.

The	first	and	second	columns	in	the	second	row	have	22

pixels	between	them	(20	pixels	for	the	gutter	and	2	pixels	for

the	borders).	We	can	add	this	missing	space	to	the	first

column	in	the	first	row	by	setting	flex-basis	to	22px.

section:first-of-type	.column:first-of-type	{

		flex-grow:	2;

		flex-shrink:	2;

		flex-basis:	22px;

}

Shorthand

Together,	flex-grow,	flex-shrink	and	flex-basis	form	the

cornerstone	of	what	makes	flexbox	flexible.	Since	these

properties	are	so	closely	tied	together,	there's	a	handy

shorthand	property,	flex,	that	lets	you	set	all	three.	You	can

use	it	like	this:

flex:	<flex-grow>	<flex-shrink>	<flex-basis>;

We	can	rewrite	our	CSS	to	look	like	this:

.column	{

		flex:	1	1	0px;

}

section:first-of-type	.column:first-of-type	{

		flex:	2	2	22px;

}

Ahh,	that's	better.	Why	the	0px	in	the	first	flex	declaration?

There's	a	bug	in	Internet	Explorer	10	and	11	that	ignores

flex	if	the	basis	doesn't	include	a	unit.

https://github.com/philipwalton/flexbugs#4-flex-shorthand-declarations-with-unitless-flex-basis-values-are-ignored

That's	It!

You've	covered	a	ton	of	great	stuff	in	this	chapter,	including

flex-grow,	flex-shrink	and	flex-basis.	You've	also	seen

how	these	properties	can	be	used	to	implement	twelve-

column	layouts.

If	you're	looking	for	a	challenge,	try	finishing	off	the	entire

grid.	Here's	what	it	looks	like	completed.

If	you're	still	confused	about	how	flex-grow,	flex-shrink

and	flex-basis	work,	don't	worry.	These	properties	are	the

hardest	thing	to	understand	about	flexbox.	You'll	be

reviewing	them	again	in	later	chapters,	including	the	next

chapter,	where	you'll	build	an	awesome	video	player	layout!

CHAPTER 3

Building a Video Player

What's	the	best	part	about	watching	a	movie?	Is	it	the	salty

popcorn	that	coats	your	fingertips	in	hot,	melted	butter?	How

about	the	mountains	of	crunchy	candy	or	the	monolithic

soda?	Could	it	be	the	special	effects	and	explosions,	or	the

raw	talent	of	the	actors	and	actresses?	Maybe	it's	the

profound	cinematography	or	the	moving	musical	score?

Of	course	not!	It's	the	playback	controls	for	the	video	player,

and	in	this	chapter,	you're	going	to	learn	how	to	make	them!

I'll	show	you	how	to	build	the	killer	layout	you	see	above

using	flexbox!

Lights,	Camera,	Action!

If	you	look	at	the	video	player	screenshot	about,	you'll	notice

that	it	can	be	cleanly	divided	into	multiple	sections.

Let's	start	by	capturing	this	structure	in	HTML.

<div	class="video-player">

		<img	src="hot_air_balloons.jpg"	alt="Video"

				width="960"	height="540">

		<div	class="controls-container">

				<div	class="controls">

						<div	class="top-controls">

								<div	class="volume-controls"></div>

								<div	class="playback-controls"></div>

								<div	class="size-controls"></div>

						</div>

						<div	class="progress-controls"></div>		

				</div>

		</div>

</div>

Here	you've	created	a	container	for	the	video	player.

Normally,	inside	that	container	you'd	use	a	<video>	element,

but	to	make	life	easier	we'll	use	an		element.

Inside	the	video	player	container	is	a	<div>	with	a	class	of

controls-container,	which	will	be	used	for—you	guessed	it

—containing	the	controls.	The	top	row	of	the	controls	is	split

into	the	volume	controls,	the	playback	controls	and	the	size

controls.	The	bottom	row	is	devoted	to	the	progress	controls.

The	Container

The	first	thing	you	need	to	do	is	center	the	video	player

controls	in	the	container.	You	can	do	this	by	absolutely

positioning	the	controls	container	over	the	top	of	the	video

player.	This	allows	the	video	player	<div>	to	be	determined

by	the	size	of	the	image	inside	of	it.	While	you're	at	it,	add

some	CSS	to	size	the	controls	container	so	you	can	see	it.

.video-player	{

		position:	relative;

}

.controls-container	{

		position:	absolute;

		top:	0;

		bottom:	0;

		left:	0;

		right:	0;

}

.controls	{

		width:	480px;

		margin-bottom:	32px;

		padding:	12px	4px;

}

What	we	want	is	for	the	controls	to	be	positioned	in	the

bottom	center	of	the	controls	container.	You	can	accomplish

that	setting	the	control	container's	display	property	to	flex

and	using	align-items	and	justify-content.

.controls-container	{

		...

		display:	flex;

		justify-content:	center;

		align-items:	flex-end;

}

There	you	go!	Now	you	have	a	nicely	positioned	<div>	for

your	controls.

The	Progress	Controls

The	next	step	is	to	build	the	progress	controls.	The	HTML	for

these	is	pretty	straightforward.

<div	class="progress-controls">

		00:00:00

		<input	type="range">

		01:14:26

</div>

The	idea	here	is	to	place	the	time	elapsed	and	time	remaining

	elements	on	the	left	and	right	of	the	container,

respectively.	The	<input>	then	fills	up	the	remaining	space.

.progress-controls	{

		display:	flex;

}

.time-elapsed,	.time-remaining	{

		flex:	0	0	auto;

}

.progress-controls	input[type="range"]	{

		flex:	1	1	0px;

}

What's	that	auto	value?	Setting	the	flex-basis	to	auto	tells

flexbox	to	resize	the	container	based	upon	the	size	of	the

content.	In	this	case,	the	time	elapsed	and	time	remaining

spans	take	up	as	much	room	as	they	need.	Then,	the	progress

controls	container	stretches	to	take	up	the	rest	of	the	space.

The	Top	Controls

The	top	controls	are	a	little	trickier	than	the	bottom	controls.

<div	class="top-controls">

		<div	class="volume-controls">

				<button>

						<img	alt="Low	Volume"

								src="low_volume.svg">

				</button>

				<input	type="range">

				<button>

						<img	alt="High	Volume"

								src="high_volume.svg">

				</button>

		</div>

		<div	class="playback-controls">

				<button>

						

				</button>

				<button>

						

				</button>

				<button>

						<img	alt="Fast	Forward"

								src="fast_forward.svg">

				</button>

		</div>

		<div	class="size-controls">

				<button>

						<img	alt="Fullscreen"

								src="fullscreen.svg">

				</button>

		</div>

</div>

The	markup	doesn't	look	very	nice,	but	it'll	do	the	job.	It

mainly	consists	of	buttons	containing	images	and	<div>

containers.

The	first	step	in	styling	the	top	controls	is	to	display	them

side	by	side.	In	order	to	do	that,	you	need	to	set	the	top

container's	display	to	flex.	Remember,	the	default	value	for

flex-direction	is	row,	so	the	container's	contents	will	be

displayed	horizontally.	While	you're	at	it,	add	a	little	margin

to	the	bottom	of	the	top	controls.

.top-controls	{

		display:	flex;

		margin-bottom:	8px;

}

To	make	the	volume	controls,	playback	controls	and	size

controls	horizontal,	you'll	also	make	each	a	flex	container.

You	can	use	align-items	to	vertically	center	their	content.

.volume-controls,

.playback-controls,

.size-controls	{

		display:	flex;

		align-items:	center;

}

Next,	you	need	to	space	them	out.	You	may	be	thinking	you

can	make	the	volume	controls	and	size	controls	container

size	to	their	content,	and	have	the	playback	controls	stretch

to	fit	the	container	using	flex-grow	and	flex-shrink.

However,	if	you	try	that,	you'll	end	up	with	controls	that	look

like	this:

Notice	how	the	playback	controls	aren't	centered?	Instead,

you'll	make	the	playback	controls	container	size	to	its

content	and	let	the	volume	and	size	controls	expand.

.playback-controls	{

		flex:	0	0	auto;

}

.volume-controls,	.size-controls	{

		flex:	1	1	0px;

}

This	works	because	the	flex-basis	of	the	playback	controls

is	auto,	so	playback	controls	container	is	sized	to	the	buttons

it	contains.	The	volume	and	size	controls	then	evenly	fill	the

remaining	space.

Next,	align	the	items	in	the	size	controls	container	to	the

end.

.size-controls	{

		justify-content:	flex-end;

}

The	very	last	step	is	to	add	a	small	margin	around	the

buttons	and	time	elements.

button,	.time-elapsed,	.time-remaining	{

		margin:	0	8px;

}

That's	it!	Two	thumbs	up!

Fin

The	next	time	you're	ready	to	kick	back	and	watch	your

favorite	action	flick,	remember	you	can	rebuild	the	playback

controls	using	your	own	flexbox	kung	fu.

CHAPTER 4

Say Goodbye to Vendor Prefixes

Imagine	you're	lying	on	a	beach.	Waves	slide	up	and	down	a

sandy	shore	while	the	warm	sun	beats	down	on	your	skin.

You	sip	a	cool,	refreshing	drink,	and	sigh	as	gulls	faintly	caw

in	the	distance.

A	gentle	breeze	lightly	brushes	your	fingers	as	they	slide

across	your	keyboard.	Tap	tap	tap.	You're	writing	CSS.	Not

just	any	CSS,	but	pure	CSS,	the	purest	you	can	imagine.	There

are	no	vendor	prefixes	or	browser	inconsistencies,	no

external	libraries	and	no	compilers.	Your	code	just	works.

In	this	chapter,	I'll	show	you	how	this	dream	can	become

reality	with	a	tool	called	Autoprefixer.	I'll	also	walk	you

through	the	problems	it	solves	and	how	to	set	it	up.

Writing	Vanilla	Flexbox	Sucks

With	flexbox,	there	are	two	things	getting	in	the	way	of

coding	utopia:	old	versions	of	the	syntax	and	vendor	prefixes.

Old	Versions	of	Flexbox

The	process	for	adding	a	new	feature	like	flexbox	into	the	CSS

language	is	complex	and	lengthy.	It	may	seem	like	flexbox	is

fairly	new,	but	the	first	draft	was	actually	done	back	in	2009.

Since	then,	flexbox	has	gone	through	two	major	changes,

leaving	us	with	three	versions	of	the	syntax.

These	implementations	are	very	similar,	but	the	syntax	is

different	and	the	older	versions	don't	support	all	of	the	newer

features.	Unfortunately,	Android	4.1	and	4.3	only	support	the

2009	syntax,	and	IE10	only	supports	the	2012	syntax,	so	if

you	want	maximum	browser	support	you	still	need	to	use

them.

Vendor	Prefixes

Have	you	ever	seen	CSS	properties	starting	with	- ​webkit ​-​,	-

moz-,	-ms-	or	-o-?	Those	thing	are	called	vendor	prefixes.	My

favorite	explanation	of	vendor	prefixes	comes	from	Peter-

Paul	Koch	of	QuirksMode:

Originally,	the	point	of	vendor	prefixes	was	to	allow

browser	makers	to	start	supporting	experimental	CSS

declarations.

Let’s	say	a	W3C	working	group	is	discussing	a	grid

declaration	(which,	incidentally,	wouldn’t	be	such	a	bad

The	2009	version	used	display:	box	and	had

properties	that	began	with	box.

•

The	2012	syntax	used	display:	flexbox.•

The	current	version	uses	display:	flex	and

properties	that	begin	with	flex.	It's	extremely

unlikely	the	syntax	will	change	again.

•

http://www.quirksmode.org/blog/archives/2010/03/css_vendor_pref.html

idea).	Let’s	furthermore	say	that	some	people	create	a

draft	specification,	but	others	disagree	with	some	of	the

details.	As	we	know,	this	process	may	take	ages.

Let’s	furthermore	say	that	Microsoft	as	an	experiment

decides	to	implement	the	proposed	grid.	At	this	point	in

time,	Microsoft	cannot	be	certain	that	the	specification

will	not	change.	Therefore,	instead	of	adding	grid	to	its

CSS,	it	adds	-ms-grid.

The	vendor	prefix	kind	of	says	“this	is	the	Microsoft

interpretation	of	an	ongoing	proposal.”	Thus,	if	the	final

definition	of	grid	is	different,	Microsoft	can	add	a	new

CSS	property	grid	without	breaking	pages	that	depend	on

-ms-grid.

Putting	Them	Together

Let's	take	an	example	of	some	CSS	from	Chapter	1.

.fourth-face	{

		display:	flex;

		justify-content:	space-between;

}

.fourth-face	.column	{

		display:	flex;

		flex-direction:	column;

		justify-content:	space-between;

}

When	you	add	the	vendor	prefixes	and	old	versions	of	the

syntax,	it	looks	like	this:

.fourth-face	{

		display:	-webkit-box;

		display:	-webkit-flex;

		display:	-ms-flexbox;

		display:	flex;

		-webkit-box-pack:	justify;

		-webkit-justify-content:	space-between;

		-ms-flex-pack:	justify;

		justify-content:	space-between;

}

.fourth-face	.column	{

		display:	-webkit-box;

		display:	-webkit-flex;

		display:	-ms-flexbox;

		display:	flex;

		-webkit-box-orient:	vertical;

		-webkit-box-direction:	normal;

		-webkit-flex-direction:	column;

		-ms-flex-direction:	column;

		flex-direction:	column;

		-webkit-box-pack:	justify;

		-webkit-justify-content:	space-between;

		-ms-flex-pack:	justify;

		justify-content:	space-between;

}

Yikes!	There	are	a	ton	of	problems	with	this	code:

You're	repeating	yourself.	Generally,	developers

shouldn't	duplicate	code	when	possible.

•

Too	much	to	remember.	It's	a	lot	of	extra	work

to	remember	all	of	those	vendor	prefixes.	They

don't	always	match	the	names	of	the	regular

properties.

•

It's	easy	to	forget	a	prefix.	If	you	do,	you	won't

notice	the	problem	unless	you're	specifically

testing	in	that	browser.

•

Autoprefixer	to	the	Rescue!

Autoprefixer	is	a	tool	that	automatically	adds	vendor	prefixes

to	your	CSS.	It	also	translates	properties	to	older	versions

and	even	removes	any	unnecessary	prefixes.	You	can

configure	it	to	target	specific	browsers.	Best	of	all,	it	works

like	magic—once	it's	turned	on,	you	can	forget	it's	there.

CodePen

The	easiest	way	to	try	out	AutoPrefixer	is	with	CodePen.

CodePen	is	an	online	code	editor	that	lets	you	jump	straight

into	coding.	To	give	it	a	shot,	head	over	to	CodePen	and	click

on	the	“New	Pen”	button.

The	code	is	difficult	to	maintain.	When	you

make	a	change,	you	have	to	do	it	in	several	places.

•

http://codepen.io/
codepen.io

Next,	click	the	settings	icon	next	to	CSS.

Enable	Autoprefixer	by	clicking	on	the	radio	button	next	to

the	“Autoprefixer”	label.	(I'd	also	recommend	turning	on

Normalize.)

From	here,	you	can	type	unprefixed	CSS	into	the	CSS	area

and	Autoprefixer	will	do	all	the	work	for	you!

CodeKit

CodePen	is	great	for	small	projects,	but	most	web

development	is	done	locally.	Setting	up	a	computer	for

development	can	get	extremely	complicated.	Fortunately,	it's

easy	with	CodeKit.

https://prepros.io/

CodeKit	is	a	program	that	watches	and	incorporates	a	ton	of

popular	tools,	such	as	Autoprefixer,	Sass	and	CoffeeScript,

into	your	project.	It's	$32,	but	it's	worth	the	money	if	you're

not	quite	ready	for	tools	like	Gulp	or	Grunt.

Note:	Prepros	is	an	alternative	to	CodeKit	for	OS	X	and

Windows.	The	instructions	for	setting	it	up	should	be	very

similar	to	the	CodeKit	instructions.

To	get	started,	open	up	CodeKit	and	drag	a	folder	into	the

main	window.

Unfortunately,	CodeKit	doesn't	allow	you	to	run	Autoprefixer

on	plain	old	CSS	files.	However,	you	can	convert	them	to	Sass

files	by	renaming	the	extensions	to	.scss.	You	can	still	write

https://prepros.io/

CSS	in	these	files	like	you	normally	would.	CodeKit

automatically	copies	all	of	your	compiled	CSS	files	into	a	css

directory,	so	I'd	recommend	keeping	your	source	CSS	files	in

an	scss	folder.

Click	on	the	settings	button	and	then	under	“Languages”

click	on	“Special	Language	Tools.”

On	this	page,	check	the	box	next	to	“Run	Autoprefixer.”	In

order	to	support	all	of	the	browsers	that	can	display	flexbox,

change	the	“Autoprefixer	Browser	String”	to	this:

last	2	versions,	Explorer	>=	10,

Android	>=	4.1,	Safari	>=	7,	iOS	>=	7

That's	it!	Now,	every	time	you	make	a	change	to	one	of	your

files,	CodeKit	will	automatically	compile	it	using

Autoprefixer.

Gulp,	Grunt	and	Other	Frameworks

Gulp	and	Grunt	are	tools	that	are	make	it	easy	to	set	up	and

build	your	projects.	With	them,	you	can	set	up	powerful	build

systems	that	compile	your	files,	run	static	analysis	on	your

code	and	even	host	local	servers.

Configuring	these	tools	is	a	little	too	in	depth	for	this	lesson.

However,	if	you're	curious,	I'd	highly	recommend	digging

into	one	of	them.	The	gulp-autoprefixer	and	grunt-

autoprefixer	packages	both	include	examples	in	their	readme

http://gulpjs.com/
http://gruntjs.com/
https://github.com/sindresorhus/gulp-autoprefixer
https://github.com/nDmitry/grunt-autoprefixer

files.	If	you'd	like	to	see	my	personal	gulpfile,	check	out	this

Gist.

Many	web	application	frameworks	support	Autoprefixer,

including	Ruby	on	Rails,	ASP.NET,	Express	and	CakePHP.	If

you're	building	simple	sites,	you	can	use	static	site

generators	like	Middleman	or	Jekyll.

Chances	are	good	there's	a	way	to	incorporate	Autoprefixer

into	your	favorite	framework!

What	If	You	Can't	Use	Autoprefixer?

If	you	can't	use	Autoprefixer	in	your	project,	you	have	a

couple	options.

The	first	is	to	use	a	library	called	-prefix-free.	This	library

does	the	same	thing	as	Autoprefixer,	but	in	the	browser.	The

downside	is	that	it	takes	extra	time	and	processing	power	to

prefix	the	CSS,	which	can	make	your	site	feel	a	little	slow,

especially	on	mobile	browsers.

The	other	option	is	a	tool	called	Pleeease.	Pleeease	lets	you

paste	in	CSS.	It	then	uses	Autoprefixer	to	print	out	prefixed

styles	you	can	copy	into	your	stylesheets.

https://gist.github.com/LandonSchropp/2816314bb336fbe1f4e6
https://github.com/ai/autoprefixer-rails
http://www.nuget.org/packages/BundleTransformer.Autoprefixer/
https://www.npmjs.com/package/express-autoprefixer
https://github.com/vladkens/autoprefixer-php
https://middlemanapp.com/
https://github.com/octopress/autoprefixer
http://leaverou.github.io/prefixfree/
http://pleeease.io/play/

Don't	Worry,	Be	Happy

That's	it!	You've	learned	how	to	set	up	your	environment	for

full	CSS	awesomeness	using	tools	like	including	CodePen,

CodeKit,	Gulp	and	Grunt.	You	never	have	to	worry	about

vendor	prefixes	again!

CHAPTER 5

Breaking Free from

Twelve-Column Layouts

You're	a	rebel	without	a	cause.	You	live	life	on	the	edge.

When	others	go	right,	you	veer	left.	You	pave	your	own	way,

blaze	your	own	trail	and	march	to	the	beat	of	your	own	drum.

You	have	your	cake	and	eat	it	too.

So	it	shouldn't	come	as	a	surprise	that	the	twelve-column

layouts	we	covered	in	Chapter	2	aren't	enough	for	you.

Others	might	be	content,	but	not	you.	You	need	more.	You

need	to	craft	layouts	without	constraints.	You	need	freedom.

Well,	in	this	chapter	you're	going	to	get	it.	I'll	show	you	how

you	can	use	flexbox	to	build	layouts	that	were	once

impossible.	When	you're	done,	you'll	be	able	to	smash

through	the	boundaries	of	twelve	columns	layouts.	You'll

also	learn	to	tip	everything	on	its	side	and	build	the	same

layouts	vertically.

N-Column	Layouts

Twelve-column	layouts	are	great,	but	there	are	some	things

you	can't	do	with	them.	Take	a	calendar	for	example.	Since

weeks	in	calendars	tend	to	be	broken	up	into	seven	columns,

no	matter	how	you	arrange	it	your	layout	isn't	going	to

center	in	a	twelve-column	layout.

With	flexbox,	the	calendar	layout	is	a	piece	of	cake!	All	you

need	to	do	is	set	the	flex-grow	and	flex-shrink	properties

of	each	day	to	1.

<div	class="month">

		<div	class="week">

				<div	class="day"></div>

				<div	class="day"></div>

				<div	class="day"></div>

				<div	class="day">1</div>

				<div	class="day">2</div>

				<div	class="day">3</div>

				<div	class="day">4</div>

		</div>

http://codepen.io/LandonSchropp/pen/GJWGrO

		<div	class="week">

				<div	class="day">5</div>

				<div	class="day">6</div>

				<div	class="day">7</div>

				<div	class="day">8</div>

				<div	class="day">9</div>

				<div	class="day">10</div>

				<div	class="day">11</div>

		</div>

		<div	class="week">

				<div	class="day">12</div>

				<div	class="day">13</div>

				<div	class="day">14</div>

				<div	class="day">15</div>

				<div	class="day">16</div>

				<div	class="day">17</div>

				<div	class="day">18</div>

		</div>

		<div	class="week">

				<div	class="day">19</div>

				<div	class="day">20</div>

				<div	class="day">21</div>

				<div	class="day">22</div>

				<div	class="day">23</div>

				<div	class="day">24</div>

				<div	class="day">25</div>

		</div>

		<div	class="week">

				<div	class="day">26</div>

				<div	class="day">27</div>

				<div	class="day">28</div>

				<div	class="day">29</div>

				<div	class="day">30</div>

				<div	class="day">31</div>

				<div	class="day"></div>

		</div>

</div>

.week	{

		display:	flex;

}

.day	{

		flex-grow:	1;

		flex-shrink:	1;

		flex-basis:	0;

}

Wouldn't	it	be	nice	if	you	didn't	have	to	include	empty	days?

With	flexbox,	that's	easy!

For	the	first	day,	set	the	left	margin	to	100%	×	 ⁄ ,	which	is

42.857%.	Do	the	same	on	the	last	day	by	setting	the	right

margin	to	100%	×	 ⁄ ,	or	14.285%.	Finally,	remove	the	empty

days	from	the	HTML.

3
7

1
7

.week:first-of-type	.day:first-of-type	{

		margin-left:	42.857%;

}

.week:last-of-type	.day:last-of-type	{

		margin-right:	14.285%;

}

The	Golden	Ratio

Sometimes,	you	want	to	build	layouts	that	aren't	divisible	by

whole	numbers.	A	good	example	is	layouts	based	on	the

golden	ratio,	a	popular	constant	found	in	art,	mathematics,

architecture,	biology	and	numerous	other	places.

Flexbox	can	handle	golden	ratio	layouts	with	ease.	Simply

set	flex-grow	and	flex-shrink	to	1	for	one	of	the	columns

and	1.61803	(the	golden	ratio)	for	the	other.

<section>

		<div	class="phi-column"></div>

		<div	class="column"></div>

</section>

section	{

		width:	560px;

		height:	346px;

		display:	flex;

}

.phi-column	{

		flex-grow:	1.61803;

		flex-shrink:	1.61803;

		flex-basis:	0;

}

http://en.wikipedia.org/wiki/Golden_ratio

.column	{

		flex-grow:	1;

		flex-shrink:	1;

		flex-basis:	0;

}

Because	flexbox	allows	flex	containers	to	be	nested,	it's	easy

to	add	containers	for	rows	as	well.

<section>

		<div	class="phi-column"></div>

		<div	class="column">

				<div	class="phi-row"></div>

				<div	class="row"></div>

		</div>

</section>

.phi-column,	.phi-row	{

		flex-grow:	1.61803;

		flex-shrink:	1.61803;

		flex-basis:	0;

}

.column,	.row	{

		flex-grow:	1;

		flex-shrink:	1;

		flex-basis:	0;

		display:	flex;

}

.column	{

		flex-direction:	column;

}

By	continuing	this	pattern	of	nesting	rows	and	columns,

you'll	end	up	with	a	golden	rectangle.

If	you	overlay	this	rectangle	with	the	golden	spiral,	you'll

really	see	the	golden	ratio	in	action!

Fixed-Sized	Items

Let's	say	you	want	to	build	a	short	bio	for	yourself,	but	you

don't	know	the	width	of	the	container.

When	the	page	resizes,	ideally	the	image	will	stay	the	same

width	and	the	text	will	fill	up	the	rest	of	the	space.	Can	you

do	it	with	flexbox?	Absolutely!

Let's	start	with	the	markup.

<section	class="bio">

		<figure>

				<img	width="90"	height="90"

						src="profile.svg"	alt="Profile">

		</figure>

		<p>

				Landon	is	a	developer	and	entrepreneur

				based	in	Seattle.	He's	the	author	of	the

				Flexbox	Starter	Course	and	Unraveling

				Flexbox,	a	book	on	how	to	create	modern,

				responsive	layouts	in	CSS.

		</p>

</section>

Remember	the	flex-basis	property?	It	determines	how

much	space	a	flex	item	takes	up	before	the	remaining	space	is

distributed	using	flex-grow	and	flex-shrink.	You	can

accomplish	your	goal	by	setting	flex-basis	to	the	size	you

want	and	setting	flex-grow	and	flex-shrink	to	0.

section	{

		display:	flex;

}

p	{

		flex:	1	1	0px;

		margin-left:	10px;

}

figure	{

		flex:	0	0	90px;

}

p	{

		flex:	1	1	0px;

}

What	if	you	don't	know	the	size	of	the	image	ahead	of	time?

No	problem!	Use	the	auto	value	for	the	flex-basis	property

to	tell	flexbox	to	size	the	figure	to	the	size	of	its	content.

figure	{

		flex:	0	0	auto;

		padding-right:	10px;

}

Vertical	Layouts

In	the	past,	vertical	layouts	weren't	really	feasible	with	CSS.

Flexbox	changes	all	of	that.	Everything	you've	learned	so	far

about	flexbox	can	be	done	with	vertical	layouts.

Let's	say	you	wanted	to	build	a	full	page	layout	with	a	fixed

header	and	footer,	and	content	in	the	middle.	That's	easy!

You	can	apply	the	same	trick	you	used	in	the	bio	layout	to

keep	the	header	and	footer	the	same	size.	Then,	you'll	set

flex-grow	and	flex-shrink	to	1	for	the	content.

<main>

		<header>Header</header>

		<section>Content</section>

		<footer>Footer</footer>

</main>

html,	body	{

		height:	100%;

}

main	{

		display:	flex;

		flex-direction:	column;

		height:	100%;

}

header,	footer	{

		flex:	0	0	100px;

}

section	{

		flex:	1	1	0px;

}

What	if	the	content	in	the	<section>	is	larger	than	the	space

on	the	screen?	Let's	make	it	scroll!

section	{

		flex:	1	1	0px;

		overflow:	auto;

		-webkit-overflow-scrolling:	touch;

}

All	Done

In	this	chapter,	you	learned	that	flexbox	can	do	much	more

than	twelve-column	layouts.	You	built	items	that	stay	the

same	size	while	their	siblings	grow	and	shrink,	and	you've

even	done	vertical	layouts.	The	next	time	you	need	to	build	a

tricky	layout,	don't	hesitate	to	look	for	a	flexbox	solution!

CHAPTER 6

Perfect Pricing

Cha-ching!	If	there's	one	place	on	a	website	that	matters

more	than	any	other,	it's	the	place	where	people	spend	their

hard-earned	cash.	It's	where	someone	goes	from	being

interested	in	a	product	to	trusting	a	company	with	their

money.

Pricing	layouts	tend	to	be	a	combination	of	a	few	key

elements:

Three	or	four	plans,	arranged	in	columns•

The	price	in	big,	bold	letters•

A	list	of	features	and	benefits•

Call-to-action	buttons•

Take	a	look	at	these	examples	from	Wistia,	Shopify	and

Slack.

Wistia's	pricing	page

Shopify's	pricing	page

Slack's	pricing	page

In	this	chapter,	I'll	show	you	how	to	build	a	killer	pricing

page	using	flexbox.	If	you	develop	marketing	sites	for

business,	you'll	use	what	you	learn	from	the	chapter	all	the

time.	Let's	jump	in.

The	Columns

The	first	step	is,	as	always,	the	markup.

<section	class="pricing">

		<div	class="plan">

				<f3>Small</f3>

				<div	class="price">$99</div>

		</div>

		<div	class="plan">

				<f3>Medium</f3>

				<div	class="price">$199</div>

		</div>

		<div	class="plan">

				<f3>Large</f3>

				<div	class="price">$499</div>

		</div>

</section>

Note:	Like	the	other	examples,	I've	included	a	few	basic	styles	to

speed	things	up.	Don't	forget	you	can	always	check	the	source

code	for	the	examples	to	see	all	of	the	styles!

Here,	you	have	added	a	pricing	<section>	with	three	plans

contained	inside	of	it.	Each	plan	has	a	name	and	a	price.

The	next	step	is	to	make	the	pricing	<section>	a	flex

container	and	turn	the	plans	into	columns.

.pricing	{

		display:	flex;

		widtf:	960px;

}

.plan	{

		flex:	1	1	0px;

}

Notice	how	often	you're	using	the	column	layouts	you

learned	in	Chapter	2?	That's	because	they're	everywhere!	You

can	also	see	that	I've	added	a	few	default	styles	for	you.

Features

Next	up	is	the	list	of	features	in	each	plan.	Here's	the	HTML

for	the	middle	plan.	The	first	and	third	plans	are	the	same,

except	images	are	toggled	differently.

<div	class="plan">

		<f3>Medium</f3>

		<div	class="price">$199</div>

		

				

						<img	src="green_cfeck.svg"

								alt="Included">

						Some	really	cool	feature

				

				

						<img	src="green_cfeck.svg"

								alt="Included">

				Tfat	tfing	you	want

				

				

						<img	src="green_cfeck.svg"

								alt="Included">

						Your	fopes	and	dreams

				

				

						<img	src="gray_cfeck.svg"

								alt="Not	Included">

						Free	pfone	support

				

				

						<img	src="gray_cfeck.svg"

								alt="Not	Included">

						Weissman	Score	of	3.41

				

		

</div>

Next,	style	the	list	items	by	making	the		a	flex	container

and	setting	the	margin,	padding	and	line	height.

li	{

		display:	flex;

		line-feigft:	30px;

		padding:	15px	20px;

}

li	img	{

		margin-rigft:	10px;

}

Call	to	Action	Buttons

No	pricing	form	is	complete	without	a	call	to	action.	Let's

add	a	button	to	the	bottom	of	each	plan	so	a	person	can

select	it.

<section	class="pricing">

		<div	class="plan">

				...

				<button>Sign	Up</button>

		</div>

		<div	class="plan">

				...

				<button>Sign	Up</button>

		</div>

		<div	class="plan">

				...

				<button>Sign	Up</button>

		</div>

</section>

In	this	case,	we	want	to	treat	the	button	as	a	block	element

that	takes	up	the	full	width	of	its	container.	Since	the	button

has	a	margin	of	20px,	we'll	use	calc	in	the	widtf	to	get	it	the

right	size.

button	{

		display:	block;

		widtf:	calc(100%	-	40px);

		margin:	20px;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/calc

Making	It	Stand	out

As	it	is,	the	pricing	layout	looks	really	good.	However,	there's

one	more	thing	that	could	make	it	better:	often,	pricing

pages	will	highlight	the	most	profitable	plan	on	their	page,

driving	more	people	to	click	it.	In	our	page,	let's	emphasize

the	medium	plan	by	making	it	stick	out	above	the	other	two.

First,	add	some	HTML	to	the	middle	column	to	make	it	a

little	taller.

<div	class="plan">

		<f3>Medium</f3>

		<div	class="price">$199</div>

		<p	class="info">

				Tfis	is	tfe	plan	for	you!

		</p>

		...

		<p	class="info">

				All	tfe	cool	kids	are	doing	it!

		</p>

		<button>Sign	Up</button>

</div>

Next,	add	a	top	and	bottom	margin	to	the	first	and	third

plans.

.plan:ntf-of-type(1),	.plan:ntf-of-type(3)	{

		margin-top:	40px;

		margin-bottom:	40px;

}

Now	that	the	middle	plan	is	taller	than	the	other	two,	it

looks	a	little	funny	at	the	same	width.	You	can	fix	that	by

overriding	the	flex-basis	property	to	make	it	a	little	wider.

.plan:ntf-of-type(2)	{

		flex-basis:	60px;

}

Money	in	the	Bank

You	now	know	how	to	make	a	killer	pricing	layout	that's	sure

to	convert.	You've	seen	how	the	previous	techniques	you

learned	can	be	rehashed	into	something	completely

different.	In	the	next	chapter,	you'll	take	an	even	more

radical	departure	into	flexbox	forms!

CHAPTER 7

Flexbox Forms

It's	undeniable:	flexbox	is	great	for	full-page	layouts.	But	did

you	know	that's	not	all	you	can	do	with	it?	Unlike	twelve-

column	grid	systems,	flexbox	is	perfect	for	building	small

layouts	as	well.	Flexbox	works	well	with	these	layouts

because	it's	easy	to	make	them	fill	the	space	containing

them,	so	you	can	reuse	them	almost	anywhere!

In	this	chapter,	I'll	show	you	how	to	build	three	form	layouts

that	fit	this	pattern.	You'll	learn	how	to	create	a	credit	card

form,	multi-buttons,	and	attached	buttons,	all	with	flexbox!

Credit	Card	Form

If	you	spend	enough	time	building	web	applications,	you'll

eventually	need	to	code	a	credit	card	form.	Flexbox	makes

that	easy!

Let's	start	with	the	markup.

Note:	In	this	example,	we're	using	<div	class="fieldset">

instead	of	<fieldset>.	Why?	There's	a	bug	in	Chrome,	Safari

and	Firefox	that	prevents	<fieldset>	elements	from	being	flex

containers.	Boo!	Oh	well,	at	least	it's	easy	to	work	around.

<form>

		<h2>Credit	Card	Form</h2>

		<div	class="fieldset">

				<input	id="name"	type="text"

						placeholder="Name	on	Card">

		</div>

		<div	class="fieldset">

				<div	class="credit-card-number-container">

						<input	id="credit-card-number"

								type="number"

								placeholder="Credit	Card	Number">

				</div>

				<div>

						<input	id="cvc"	type="number"

								placeholder="CVC">

				</div>

		</div>

		<div	class="fieldset">

				<div>

						<input	type="text"

								placeholder="Exp.	Month">

				</div>

				<div>

						<input	type="text"

								placeholder="Exp.	Year">

				</div>

		</div>

		<button	type="submit">

				Buy	for	$99.99

		</button>

</form>

Step	one	is	to	set	display	for	the	inputs	and	buttons	to

block	to	make	them	fill	up	the	full	width	of	their	containers.

I	like	to	do	this	as	a	default	in	almost	all	of	my	projects.	It

makes	these	elements	much	easier	to	work	with.

label,	input,	button	{

		display:	block;

		width:	100%;

}

The	next	step	is	to	make	the	inputs	inside	the	fieldsets	share

a	single	line.	You	can	accomplish	this	with	the	flex

property.

.fieldset	{

		display:	flex;

}

.fieldset	>	*	{

		flex:	1	1	0px;

}

This	sets	flex-grow	and	flex-shrink	properties	for	the

children	of	the	fieldsets	to	1,	which	distributes	the	space

evenly.

The	next	step	is	to	add	some	space	between	the	inputs.	The

trick	is	to	set	the	left	and	right	margins	of	the	fieldset's

children,	and	then	to	remove	them	for	the	first	and	last

children.

.fieldset	>	*	{

		margin-left:	10px;

		margin-right:	10px;

}

.fieldset	>	:first-child	{

		margin-left:	0;

}

.fieldset	>	:last-child	{

		margin-right:	0;

}

The	credit	card	number	input	is	a	little	trickier.	We	want	it	to

be	three	times	the	width	of	the	CVC	container,	which	seems

easy.	However,	think	back	to	Chapter	2.	Remember,	you	have

to	set	the	flex-basis	of	the	credit	card	number	container	to

compensate	for	the	space	between	the	inputs.

.credit-card-number-container	{

		flex:	3	3	40px;

}

You're	open	for	business!

Multi-Buttons

One	of	my	favorite	form	controls	is	the	multi-button.	Unlike

a	normal	button,	it's	split	into	parts.	When	you	click	on	a

part,	it	stays	selected.	These	controls	are	nice	for	letting

people	select	from	a	short	list	of	simple	options.

Your	first	instinct	might	be	to	build	your	multi-button	using

<button>	elements,	and	use	JavaScript	to	handle	the

selection.	However,	you	can	do	it	without	JavaScript—there's

another	control	that	already	has	the	behavior	you	need.	What

is	it?	A	radio	button!

Radio	buttons?	What?	Well,	if	you	select	one,	the	browser

deselects	the	others.	They	work	well	with	form	submissions

and	they're	accessible	out	of	the	box.

<form>

		<fieldset>

				<label>

						How	tall	are	you?

				</label>

				<div	class="multi-button">

						<input	type="radio"	name="height"

								id="short"	value="short">

						<label	for="short">Short</label>

						<input	type="radio"	name="height"

								id="medium"	value="medium">

						<label	for="medium">Medium</label>

						<input	type="radio"	name="height"

								id="tall"	value="tall">

						<label	for="tall">Tall</label>

				</div>

		</fieldset>

</form>

So	how	do	you	make	radio	buttons	look	like	a	multi-button?

The	trick	is	to	use	labels.	One	of	the	coolest	things	about

labels	is	if	you	click	on	them,	it	selects	their	corresponding

inputs.	You	can	take	advantage	of	this	by	making	the	label

the	"button"	part	of	the	multi-button.

The	first	step	is	to	hide	those	inputs.

input	{

		display:	none;

}

Next,	make	the	multi-button	container	and	labels	look	like	a

button.

.multi-button	{

		border:	1px	solid	#513681;

		background:	linear-gradient(to	bottom,

				#905ae3,	#784bc0);

		color:	white;

		text-shadow:	0	2px	2px	rgba(0,	0,	0,	0.5);

		border-radius:	8px;

}

.multi-button	label	{

		text-align:	center;

		margin-bottom:	0;

		line-height:	30px;

		padding:	4px;

		user-select:	none;

}

.multi-button	label:not(:first-of-type)	{

		box-shadow:	inset	1px	0	#513681;

}

Move	the	labels	onto	the	same	line	by	making	<div

class="multi-button">	a	flex	container.

.multi-button	{

		...

		display:	flex;

}

It's	starting	to	look	like	a	multi-button!	What	we	want	is	for

each	label	to	be	the	same	width.	You	can	accomplish	this

with	the	flex	property.

.multi-button	label	{

		...

		flex:	1	1	0px;

}

Finally,	in	order	to	to	show	which	button	is	selected,	style

the	checked	input's	label.	It's	easy	with	the	adjacent	sibling

selector!

input:checked	+	label	{

		background-color:	rgba(0,	0,	0,	0.25);

}

And	that's	all	there	is	to	a	multi-button!	Plus,	what	you've

built	is	flexible—it's	easy	to	add	as	many	or	as	few	options	as

you	want.	Check	out	this	example	with	five	options:

https://developer.mozilla.org/en-US/docs/Web/CSS/Adjacent_sibling_selectors

<fieldset>

		<label>

				How	many	siblings	do	you	have?

		</label>

		<div	class="multi-button">

				<input	type="radio"	name="siblings"

						id="no-siblings"	value="0">

				<label	for="no-siblings">0</label>

				<input	type="radio"	name="siblings"

						id="one-sibling"	value="1">

				<label	for="one-sibling">1</label>

				<input	type="radio"	name="siblings"

						id="two-siblings"	value="2">

				<label	for="two-siblings">2</label>

				<input	type="radio"	name="siblings"

						id="three-siblings"	value="3">

				<label	for="three-siblings">3</label>

				<input	type="radio"	name="siblings"

						id="four-siblings"	value="4+">

				<label	for="four-siblings">4+</label>

		</div>

</fieldset>

Attached	Buttons

An	attached	button	is	simply	a	button	stuck	to	something

else,	such	as	an	input.	They're	handy	for	things	like	search

fields.

First	up	is—you	guessed	it—the	HTML!

<form>

		<fieldset>

				<label>

						Search	for	something…

				</label>

				<div	class="search-container">

						<input	type="text">

						<button>

								

						</button>

				</div>

		</fieldset>

</form>

Like	the	multi-button,	you	need	to	make	<div

class="search-container">	a	flex	container.

.search-container	{

		display:	flex;

}

In	an	attached	button,	the	button	is	a	fixed	size	and	the	input

stretches	to	fill	the	remaining	space.	Once	again,	the	flex

property	comes	to	the	rescue!	For	the	input,	you'll	set	flex-

grow	and	flex-shrink	to	1	and	flex-basis	to	0px.	This	will

force	the	input	to	grow	to	take	up	as	much	space	as	it	can.

With	the	button,	you'll	do	the	opposite:	set	flex-grow	and

flex-shrink	to	0	and	flex-basis	to	auto.

input	{

		flex:	1	1	0px;

}

button	{

		flex:	0	0	auto;

}

Lookin'	sharp!	The	last	thing	to	do	is	style	the	borders	so

they're	attached!

input	{

		flex:	1	1	0px;

		border-top-right-radius:	0;

		border-bottom-right-radius:	0;

		border-right:	none;

}

button	{

		flex:	0	0	auto;

		border-top-left-radius:	0;

		border-bottom-left-radius:	0;

}

Final	Thoughts

Flexbox	can	be	used	to	build	all	sorts	of	little	controls	like

this.	If	you	start	thinking	of	HTML	and	CSS	in	this	manner,

you'll	learn	to	build	small	components	that	can	be	used

everywhere	in	your	application.	When	you	get	to	that	point,

your	code	will	be	lighter,	more	maintainable	and	a	joy	to

work	with!

CHAPTER 8

Responsive Design

If	there's	one	topic	in	CSS	that's	buzzing,	it's	responsive

design.	Responsive	design	is	a	technique	for	building	layouts

that	adapt	to	multiple	devices	and	screen	sizes.	It's	about

respecting	your	users'	choices	for	how	they	view	your	site.

Take	a	look	at	this	example	from	Slack's	landing	page.	See

how	the	layout	adapts	to	the	size	of	the	window?

These	days,	more	people	are	using	phones	than	desktop

computers	to	access	the	web.	If	you're	not	building

responsive	layouts,	you're	excluding	those	users.	This	graph

from	John	Gruber	of	Daring	Fireball	says	it	all.

https://slack.com/
http://daringfireball.net/2015/08/most_important_device

In	this	chapter,	I'm	going	to	show	you	how	to	combine

flexbox	and	responsive	design	to	build	easy,	adaptable

layouts.

Solutions	without	Media	Queries

The	web	is	responsive	by	default.	Take	a	look	at	the	first

website	on	a	laptop	and	on	your	phone.	Notice	how	the

content	fills	up	the	space?	There's	no	fancy	CSS	making	that

happen.

http://info.cern.ch/hypertext/WWW/TheProject.html

It's	the	developers	who	make	the	web	unresponsive.	We	set

fixed	widths	and	heights	for	elements.	We	design	sites	for

desktops,	and	ignore	other	screen	sizes.	We	forget	some

people	don't	use	a	mouse	when	browsing	our	sites.	These	are

habits	we	have	to	break	to	build	responsive	layouts.

Mobile-First

In	almost	every	case,	a	website's	mobile	layout	is	simpler

than	its	desktop	layout.	Mobile	layouts	are	usually	single

columns	that	fill	the	full	width	of	their	containers.	Because

of	this,	it's	much	easier	to	start	by	building	the	mobile

version	of	your	site,	and	then	add	the	layouts	for	larger

screens	in	media	queries.	This	is	known	as	the	mobile-first

approach.

Fill	Up	the	Provided	Space

The	first	rule	of	writing	responsive	flexbox	controls	is	to

make	your	controls	fill	up	the	width	they're	given.	Take	the

multi-button	from	the	previous	layout	for	example.	Notice

how	the	control	adapts	to	the	size	of	the	container?

The	trick	is	to	let	parent	elements	worry	about	containing

their	children.	In	this	case,	the	form	is	responsible	for

defining	the	width	and	the	multi-button	is	responsible	for

filling	it.	The	advantage	of	this	approach	is	the	child	element

can	be	reused	without	having	to	change	its	CSS.

Maximum	and	Minimum	Sizes

At	certain	screen	sizes,	some	controls	look	a	little	crummy.

Look	at	the	multi-button	on	a	small	screen.

You	could	set	the	width	of	the	container,	but	then	you'd	be

breaking	the	previous	guideline.	Instead,	try	setting	the	max-

width	of	your	control.	That	allows	the	control	to	grow	until	it

runs	out	of	room.

If	you	have	a	control	that's	too	big	for	its	layout,	such	as	a

large	table,	set	its	min-width	and	make	its	parent

horizontally	scroll	with	overflow-x.

Breakpoints

The	meat	and	potatoes	of	a	responsive	layout	is	using	media

queries	to	style	controls	differently	on	mobile	and	desktop.

The	screen	sizes	where	your	layout	changes	are	known	as

breakpoints.	Take	our	pricing	layout	from	Chapter	6	for

example.	On	small	screens,	it	looks	broken.

However,	with	a	few	additions,	it's	easy	to	make	it	shine.

Let's	start	by	commenting	out	the	column	styles	so	the

pricing	tiers	stack.

li	{

		display:	flex;

		line-height:	30px;

		padding:	15px	20px;

}

li	img	{

		margin-right:	10px;

}

button	{

		display:	block;

		width:	calc(100%	-	40px);

		margin:	20px;

}

/*

.pricing	{

		display:	flex;

		width:	960px;

}

.plan	{

		flex:	1	1	0px;

}

.plan:nth-of-type(1),	.plan:nth-of-type(3)	{

		margin-top:	40px;

		margin-bottom:	40px;

}

.plan:nth-of-type(2)	{

		flex-basis:	60px;

}

*/

Next,	add	back	in	the	CSS	to	turn	the	columns	into	three

tiers,	but	only	when	the	screen	is	large	enough	to

comfortably	fit	them.

@media	(min-width:	640px)	{

		.pricing	{

				display:	flex;

				width:	960px;

		}

		.plan	{

				flex:	1	1	0px;

		}

		.plan:nth-of-type(1),	.plan:nth-of-type(3)	{

				margin-top:	40px;

				margin-bottom:	40px;

		}

		.plan:nth-of-type(2)	{

				flex-basis:	60px;

		}

}

Finally,	add	a	little	space	around	the	plans	on	mobile,	and

prevent	their	margins	from	collapsing.

.plan	{

		margin:	20px;

		/*	prevent	the	margins	from	collapsing	*/

		padding-bottom:	1px;

}

@media	(min-width:	640px)	{

		.plan	{

				margin:	0;

		}

}

Do	you	see	how	the	mobile-first	paradigm	plays	out	here?

The	mobile	layout	is	simpler,	so	that's	where	you	start.	When

the	width	of	the	window	hits	640	pixels	or	more,	your	layout

shifts	and	uses	columns	instead.

That's	All

In	this	chapter,	you've	seen	the	most	important	responsive

techniques	and	how	they	work	with	flexbox.	You've	also	seen

how	several	of	the	previous	layouts	in	this	book	can	be	made

responsive.

If	you're	looking	for	a	good	challenge,	try	making	all	of	the

layouts	we've	covered	so	far	responsive.	It's	good	practice!

CHAPTER 9

Wrapping Like a Boss

Everyone	love	photos!	From	selfie	sticks	to	DSLRs,	people

constantly	find	new	ways	to	capture	moments	in	their	lives.

Between	smartphones,	Instagram	and	Facebook,	most	people

are	carrying	around	thousands	of	photos	in	their	pocket.

Wouldn't	it	be	nice	to	have	a	way	to	show	off	these	photos

and	beef	up	your	flexbox	skills	at	the	same	time?	In	this

chapter,	you'll	learn	how	flexbox	can	span	multiple	lines	with

the	flex-wrap	property,	and	you'll	use	this	property	to	build

a	sweet	photo	layout.

A	Simple	Example

Let's	start	with	an	easy	layout.	To	keep	things	simple,	you'll

use	the	same	photo	multiple	times.	Here's	the	markup	and

the	basic	CSS.

<section>

		

		

		

		...

		

</section>

section	{

		display:	flex;

}

Flexbox	tries	to	cram	as	many	items	as	it	can	onto	one	line,

because	the	default	value	of	flex-shrink	is	1.	What	we	want

is	for	the	items	to	drop	to	the	next	line	when	the	first	line	is

full.	That's	where	the	flex-wrap	property	comes	in!

section	{

		display:	flex;

		flex-wrap:	wrap;

}

That's	better!	Flexbox	ran	out	of	room	on	the	first	line,	so	it

wrapped	the	items	to	the	next	line.	The	main	axis	and	cross

axis	now	look	like	this:

The	images	are	a	little	big.	Let's	shrink	them	down	and	add

some	space	between	them.

img	{

		width:	160px;

		height:	120px;

		margin:	10px;

}

Different	Shapes	and	Sizes

Your	photo	library	would	be	a	little	boring	if	it	only	showed

one	image.	Photo	libraries	are	full	of	photos	that	are	different

sizes	and	shapes.	Go	ahead	and	update	your	HTML	to	include

multiple	image	and	sizes.

<section>

		

		

		

		...

		

</section>

Yikes!	The	portrait	photos,	such	as	the	building,	are	way	too

scrunched.	What	you	want	is	for	the	photos	to	retain	their

aspect	ratio,	but	stay	the	same	height.

img	{

		width:	auto;

		height:	120px;

		margin:	10px;

}

Now	the	right	side	of	the	library	looks	a	little	wonky.

Wouldn't	it	be	great	if	we	could	arrange	the	images	to	look	a

little	nicer?	We	can	with	the	justify-content	property!

Remember,	justify-content	tells	flexbox	how	to	distribute

space	between	items	along	the	main	axis.	What's	really	cool

is	it	even	works	when	the	content	is	wrapped!

Let's	try	centering	the	content.

section	{

		display:	flex;

		flex-wrap:	wrap;

		justify-content:	center;

}

Nice!	My	favorite	value	of	justify-content	is	space-

between,	which	aligns	the	left	and	right	sides	of	the	images.

section	{

		display:	flex;

		flex-wrap:	wrap;

		justify-content:	space-between;

}

Doesn't	that	look	better?

Align	Content

By	default,	when	a	flex	container	has	a	fixed	height,	flexbox

stretches	the	items	to	fit.	We	can	change	that	if	we	want	to.

The	align-content	property	determines	how	space	is

distributed	between	lines	along	the	cross	axis.	This	property

takes	six	values:

flex-start:	Align	the	content	to	the	start	of	the

container.

•

flex-end:	Align	the	content	to	the	end	of	the

container.

•

center:	Center	the	content	in	the	container.•

Let's	try	space-between.

html,	body,	section	{

		height:	100%;

}

section	{

		display:	flex;

		flex-wrap:	wrap;

		justify-content:	space-between;

		align-content:	space-between;

}

stretch:	Stretch	the	content	to	fit	in	the

container.

•

space-between:	Evenly	distribute	the	space

between	the	lines.

•

space-around:	Evenly	distribute	the	space	around

the	lines.

•

Direction	Matters	Too

Everything	we've	done	works	with	column	layouts!	All	we

need	to	do	is	set	flex-direction	to	column.	This	switches

the	main	axis	with	the	cross	axis	and	changes	the	direction	of

the	properties.

Let's	give	it	a	shot.

html,	body,	section	{

		height:	100%;

}

section	{

		display:	flex;

		flex-direction:	column;

		flex-wrap:	wrap;

		justify-content:	space-between;

		align-content:	space-between;

}

img	{

		width:	150px;

		height:	auto;

		margin:	10px;

}

Pretty	cool,	right?

Wrapping	Up

In	this	chapter,	you've	learned	how	to	use	the	flex-wrap

property	to	build	an	awesome	photo	album.	You've	played

with	align-content	to	arrange	the	items,	and	you've	even

tried	out	wrapping	with	columns.

For	a	little	extra	practice,	try	building	a	layout	that	pulls

down	random	images	and	still	looks	good.	You	can	use	a

service	like	PugMe	to	grab	images.

http://pugme.herokuapp.com/random

CHAPTER 10

Progressive Enhancement

Of	all	the	things	web	developers	like	to	complain	about,	one

thing	sticks	out	the	most:	old	browsers.	Developers	hate

supporting	older	browsers	that	don't	include	new

technologies	like	flexbox.	If	you	haven't	already,	you	will

eventually	experience	this	pain.	So	what	can	you	do?

In	this	chapter,	I'll	teach	you	about	progressive	enhancement,

a	technique	you	can	use	to	gain	all	of	the	flexbox	goodness	in

newer	browsers	while	still	providing	an	acceptable

experience	in	browsers	that	don't	support	it.

A	Progressive	Agenda

The	main	idea	behind	progressive	enhancement	is	to	build	a

basic	site	that	functions	across	all	major	browsers.	It	might

not	be	pretty,	but	it	should	be	usable.	For	browsers	that

support	newer	features,	you	progressively	add	features	to

enhance	the	experience.	One	of	the	brilliant	things	about	CSS

is	browsers	ignore	properties	they	don't	recognize,	so	you

can	feel	free	to	embrace	the	new	while	falling	back	to	the

old.

Let's	say	you're	writing	a	site	and	that	needs	to	support

Internet	Explorer	8.	You'd	like	for	your	buttons	to	have

rounded	corners,	a	nice	gradient	and	box	shadows,	but	IE8

doesn't	support	any	of	these	properties.	Does	this	mean	you

can't	use	them?	Of	course	not!	You	simply	make	a	basic

button	for	IE8.	It's	still	a	perfectly	usable	button	that	does	all

the	things	a	button	should.	Then,	for	browsers	that	support

the	modern	features,	you	add	the	extra	functionality.

body	{

		text-align:	center;

		font-size:	24px;

		background-color:	#524a79;

		/*	modern	properties	*/

		display:	flex;

		align-items:	center;

		justify-content:	center;

}

button	{

		margin:	100px	0;

		padding:	20px	40px;

		line-height:	20px;

		border:	none;

		background-color:	#97d8ec;

		color:	#3e3245;

		/*	modern	properties	*/

		border-radius:	30px;

		background-color:	#97d8ec;

		background:	linear-gradient(to	bottom,	#97d8ec,

				#74bbca);

		text-shadow:	0	0	1px	rgba(255,	255,	255,	0.5);

		box-shadow:	0	0	20px	#3e3245;

}

Progressive	enhancement	with	flexbox	follows	the	same

idea.	Your	goal	with	the	basic	layout	is	to	get	information

across,	not	to	make	it	perfect.

Modernizr

There	are	some	layouts	that	depend	on	modern	features.

Take	the	multi-button	example	from	chapter	7.	In	an	older

browser,	it	looks	like	this:

So	what	can	you	do?	One	option	is	to	use	a	tool	like

Modernizr.	Modernizr	is	a	library	that	appends	classes	to	the

<html>	element	to	tell	you	which	features	are	supported	by

that	browser.	If	you	include	this	library,	you	can	rewrite	the

multi-button	CSS	like	this:

.flexbox	label	{

		...

}

.flexbox	input	{

		...

}

http://modernizr.com/

.flexbox	.multi-button	{

		...

}

.flexbox	.multi-button	label	{

		...

}

.flexbox	.multi-button

label:not(:first-of-type)	{

		...

}

.flexbox	input:checked	+	label	{

		...

}

Isn't	that	great?	On	browsers	that	support	flexbox,	the

�lexbox	class	is	added	to	the	<html>	element	and	you

provide	a	nice	multi-button.	On	browsers	that	don't,	there's

no	flexbox	class	so	you	fall	back	to	radio	buttons.

Last	Resort

Sometimes,	your	layout	completely	depends	on	a	browser

supporting	a	certain	feature.	One	last	resort	is	to	display	a

message	letting	users	know	they're	using	an	older	browser

that	your	site	doesn't	work	on.	If	you're	using	Modernizr,	you

can	do	this	with	a	little	JavaScript.

$(function()	{

		if	($("html").hasClass("no-flexbox"))	{

				alert("...");

		}

});

Generally	speaking,	this	is	a	bad	idea.	Only	do	it	if	your	site

absolutely	doesn't	work	without	flexbox.	Also,	be	careful

with	how	your	site	interacts	with	non-sighted	users.

Sometimes,	screen	readers	disable	features	that	aren't

needed	by	their	users.

Examples

If	you	look	at	the	twelve-column	layouts	from	chapter	4,

they're	already	progressively	enhanced.	On	older	browsers,

they	simply	become	one-column	layouts.	The	content	is	still

readable,	which	is	appropriate	for	older	browsers.

The	responsive	pricing	layout	also	works	in	older	browsers.

One	of	the	cool	things	about	the	mobile-first	philosophy	is

the	mobile	layouts	tend	to	be	simpler,	single-column

layouts,	which	play	well	with	older	browsers.	This	lends

itself	well	to	progressive	enhancement.

Going	Forward

Hopefully	the	problem	of	older	browsers	lacking	modern

features	will	soon	be	a	thing	of	the	past.	Microsoft's	newest

browser,	Edge,	is	evergreen,	meaning	it's	always	kept	up	to

date.	Chrome	and	Firefox	are	also	evergreen,	and	Safari	users

do	a	good	job	of	upgrading.	Soon,	we'll	be	living	in	a	world

where	we	can	use	the	web's	latest	features	without	worrying

too	much	about	breaking	older	browsers.	Woohoo!

Until	then,	progressive	enhancement	is	a	powerful	technique

you	can	use	in	your	CSS.	Done	right,	it'll	make	people	with

newer	browsers	happy	and	let	people	with	older	browsers

still	use	your	site.	Have	fun!

CHAPTER 11

Ordering

So	far,	you've	learned	almost	all	of	the	flexbox	properties	and

how	to	use	them.	However,	you're	still	missing	one	piece	of

the	puzzle:	ordering.	It's	not	the	most	glamorous	flexbox

property,	but	it's	damn	handy	when	you	need	it.

In	this	chapter,	I'm	going	to	tell	you	why	you	should	care

about	ordering	and	show	you	two	different	ways	you	apply	it

to	your	layouts.

Flexbox	to	the	Rescue

The	most	common	way	to	reorder	elements	in	a	flex

container	is	by	using	the	order	property.	You	set	order	for

any	of	the	children	in	a	flex	container	to	an	integer	and	the

items	will	be	sorted	by	those	values.	For	example,	let's	say

you	have	a	list	of	items.

<ol	class="numbers">

		1

		2

		3

		4

The	value	of	order	for	an	element	doesn't	matter	by	itself.

What	is	important	is	the	value	relative	to	the	other	flex	items .

Let's	say	you	set	the	order	property	for	the	first	list	item	to	1.

li:nth-of-type(1)	{

		order:	1;

}

Why	did	the	first		move	to	the	back?	The	default	value	of

order	is	0,	so	the	second,	third	and	fourth	s	were	all

lower	than	1.	If	the	values	for	order	match,	the	ordering	falls

back	to	the	original	order	in	the	HTML.

It	doesn't	matter	how	far	apart	the	values	are.

li:nth-of-type(1)	{

		order:	3000;

}

li:nth-of-type(2)	{

		order:	2000;

}

li:nth-of-type(3)	{

		order:	1000;

}

li:nth-of-type(4)	{

		order:	4000;

}

Finally,	order	accepts	negative	numbers.	Since	the	default

value	of	order	is	0,	this	is	a	handy	way	to	move	an	item	to

the	front.

li:nth-of-type(4)	{

		order:	-1;

}

Why	Bother?

The	biggest	reason	to	reorder	elements	is	accessibility.	The

order	property	doesn't	affect	non-visual	media,	such	as

screen	readers.	This	means	you	can	write	your	HTML	in	a

way	that	makes	sense	logically,	and	then	change	how	it's

displayed	visually.	For	example,	take	a	look	at	this	Holy	Grail

layout	example	from	the	W3	flexbox	specification.

http://www.w3.org/TR/css-flexbox-1/#order-accessibility

<header>...</header>

<main>

			<article>...</article>

			<nav>...</nav>

			<aside>...</aside>

</main>

<footer>...</footer>

In	the	past,	it	hasn't	been	possible	to	build	this	layout

without	rearranging	your	HTML.	With	order,	it's	easy.

Assuming	the	<main>	element	is	a	flex	container,	you	can

achieve	the	correct	order	like	this:

article	{

		order:	2;

}

nav	{

		order:	1;

}

aside	{

		order:	3;

}

The	other	reason	for	reordering	elements	is	responsive

design.	You	can	use	the	order	property	to	rearrange

elements	as	the	viewport	changes	size.

The	flex-direction	Property

The	flex-direction	property	isn't	quite	as	flexible	as	order,

but	it	can	be	used	to	reverse	the	order	of	elements	in	a

container.	We've	seen	two	of	the	values	for	this	property:	row

and	column.	flex-direction	also	accepts	row-reverse	and

column-reverse.

Let's	look	at	the	same	example	from	above.

ol	{

		flex-direction:	row-reverse;

}

Order	Up

You've	now	learned	all	of	the	flexbox	properties!	You	can	use

the	order	property	for	fine-grained	arrangement	or	flex-

direction	to	reverse	all	of	the	items	in	a	flex	container.	The

next	time	you	run	into	a	tricky	problem	that	requires

rearranging	elements,	you'll	know	exactly	what	to	do!

CHAPTER 12

Cross-Browser Testing

You've	spent	weeks	meticulously	crafting	your	layout.	It's

perfect—a	real	masterpiece.	The	night	before	you're	going	to

release	your	design	to	the	world,	you	decide	to	try	it	out	in

Internet	Explorer,	just	to	make	sure	everything	looks	okay.

It's	ruined!	Everything	you	worked	so	hard	to	create	is

completely	broken	in	IE!	What	can	you	do?

Don't	worry,	this	happens	all	the	time.	Browsers	have

rendering	quirks	that	break	certain	layouts.	Some	are	worse

than	others	(cough	IE	cough) .	Unless	you're	actively	testing	in

different	browsers,	chances	are	good	your	CSS	will	fail

somewhere.

In	this	chapter,	I'll	show	you	how	to	decide	which	browsers

to	support	and	walk	you	through	how	to	test	your	code	in

each	one.	I'll	also	show	you	where	to	find	help	if	you	run	into

a	bug.

Deciding	What	to	Support

Before	you	can	test,	you	need	to	decide	which	browsers	you'll

support	and	which	ones	you'll	ignore.	In	an	ideal	world,

you'd	be	able	to	support	everything.	However,	doing	this	is

extremely	time	consuming.	In	my	experience,	supporting	IE	7

and	8	doubles	the	amount	of	time	you	spend	writing	CSS,	and

IE	6	quadruples	it.

In	most	cases,	you'll	want	to	look	at	your	target	audience	and

decide	what's	reasonable.	You	can	find	this	information	in

Google	Analytics.

Google	Analytics	browser	stats

If	you	need	a	particular	technology,	your	browser	support

will	be	determined	by	that	technology.	For	flexbox,	here's

the	list	of	supported	browsers	from	Can	I	Use.

Can	I	User	flexbox	browser	support

http://caniuse.com/#search=flexbox

If	you'd	like	to	see	the	specific	browser	usage	stats,	check	out

the	Can	I	Use	Usage	Table.

Testing

Desktop	Browsers

Testing	desktop	browsers	is	much	easier	than	testing	mobile

browsers.	For	Chrome	and	Firefox,	just	download	the	browser

and	open	up	your	site.	Safari	comes	preinstalled	on	OS	X,	but

isn't	available	for	Windows.

Chrome,	Firefox	and	Safari

Microsoft	has	graciously	released	a	collection	of	virtual

machines	to	test	Internet	Explorer.	You	can	download	these

for	free	on	Modern.IE.	Thanks,	Microsoft!

http://caniuse.com/usage-table
http://dev.modern.ie/tools/vms/

To	use	them,	install	an	emulator	such	as	VirtualBox.	Then,

download	the	virtual	machines	for	each	version	of	Internet

Explorer	you'd	like	to	test.	Open	them	in	your	emulator	and

you're	good	to	go!

Internet	Explorer	running	in	a	virtual	machine

Chrome	has	a	feature	that	lets	you	test	your	site	for	smaller

screens.	To	use	it,	open	up	the	Chrome	Dev	tools	and	click	on

the	on	the	mobile	icon.	Here,	you	can	adjust	the	screen	size

to	see	what	your	layout	looks	like	on	certain	screens.

https://www.virtualbox.org/wiki/Downloads
http://dev.modern.ie/tools/vms/

Chrome's	emulator

Mobile	Browsers

The	best	way	to	test	your	code	in	mobile	browsers	is	by

running	it	on	real	phones.	I'd	recommend	asking	friends	who

are	trading	in	their	phones	if	you	can	have	the	old	one.	You

can	also	purchase	phones	on	CraigsList	or	eBay,	but	be

careful	that	you	don't	get	scammed	or	buy	a	stolen	phone.

Chrome	for	Android	uses	Blink	under	the	hood,	which	makes

it	mostly	consistent	with	desktop	Chrome.	It's	safe	to	only

test	the	most	recent	version	of	this	browser.

The	Android	stock	browser	is	a	different	story.	For	flexbox,

you	need	to	test	4.1,	4.3	and	4.4	independently.	This	probably

means	using	three	separate	devices,	each	with	a	different

version	of	Android	installed.

It's	possible	to	test	Android	browsers	using	an	emulator.

However,	it's	a	huge	pain	to	set	up,	and	the	emulator	is

tediously	slow.	If	you'd	like	to	try,	Google	has	published

instructions	for	setting	up	an	emulator.	However,	if	you	have

access	to	an	Android	phone,	that's	a	better	option.

For	iOS,	it's	possible	to	install	an	emulator	on	OS	X,	but	I've

seen	several	bugs	on	iPhones	that	couldn't	be	reproduced	in

the	emulator.	Your	best	bet	is	to	pick	up	a	used	iPhone	or

iPod	Touch	and	test	on	that.

BrowserStack

BrowserStack	is	my	favorite	way	to	test	multiple	browsers.	It

emulates	desktop	and	mobile	browsers,	and	makes	it	easy	to

switch	between	them.	At	$29	per	month,	it's	somewhat

expensive.	However,	if	you're	a	professional	web	developer,

it's	an	invaluable	tool	for	making	sure	your	site	works

perfectly	across	devices.

To	use	BrowserStack,	simply	choose	the	OS	and	browser

you'd	like	to	test	and	open	your	site!

http://developer.android.com/tools/devices/index.html
https://www.browserstack.com/

BrowserStack

What	To	Do	When	You	Find	a	Flexbox	Bug

You've	tested	your	site	across	multiple	browsers	and	found	a

bug.	Now	what?	There	are	a	few	places	to	look	for	answers.

Flexbugs

Flexbugs

The	first	place	you	should	check	for	flexbox	bugs	is	Flexbugs.

This	fantastic	resource	lists	many	of	the	major	flexbox	bugs

and	workarounds	for	each	one.	The	Flexbugs	Issues	page

contains	several	bugs	that	haven't	been	added	to	the	main

document,	so	look	there	too.

https://github.com/philipwalton/flexbugs
https://github.com/philipwalton/flexbugs/issues

StackOverflow

StackOverflow

Unless	you've	been	hiding	under	a	rock,	chances	are	good

you've	visited	StackOverflow	at	least	a	few	times.	This

question-and-answer	site	makes	it	easy	to	find	answers

about	almost	any	development	topic,	including	flexbox.

If	you	have	a	question	you'd	like	to	ask,	there	are	a	few

important	points	to	keep	in	mind.

Check	to	see	if	your	question	has	already	been

answered.	Chances	are	pretty	good	you're	not	the

first	person	to	have	your	question.	Look	around

and	see	if	somebody's	already	asked	it.

•

http://stackoverflow.com/

Browser	Bug	Tracker

Bugzilla

Try	to	create	a	simple	version	of	your	problem.

It's	easier	to	solve	your	problem	if	you	don't	post	a

mountain	of	code	with	it.	Plus,	many	times	you

will	solve	your	own	problem	when	trying	to

reproduce	it.

•

Be	specific.	Asking	“Why	doesn't	setting	display

to	flex	for	a	<fieldset>	work	in	Chrome?”	is	better

than	“Why	doesn't	this	work?”.

•

Pay	attention	to	spelling,	grammar	and

formatting.	Your	question	is	more	likely	to	get

answered	if	people	can	read	it.

•

Every	major	browser	has	a	bug	tracker	you	can	use	to	search

for	bugs.

These	tools	are	often	incomplete	and	difficult	to	search

through.	However,	if	you	take	the	time,	it's	possible	to	find

answers	you	won't	see	anywhere	else.

All	Set

You've	now	learned	how	to	determine	which	browsers	to

support	for	your	project,	how	to	test	your	site	on	those

browsers,	and	where	to	look	when	you've	found	a	problem.

If	you're	looking	for	a	extra	challenge,	try	testing	some	of	the

layouts	you've	previously	built	in	older	browsers.	Then,	see	if

you	can	use	the	progressive	enhancement	techniques	from

Chapter	10	to	fix	them!

Microsoft	Connect	Feedback	Center	(Internet

Explorer)

•

Chromium	Issues	(Google	Chrome)•

Bugzilla	(Mozilla	Firefox)•

Webkit	Bugzilla	(Apple	Safari)•

https://connect.microsoft.com/IE/Feedback
https://code.google.com/p/chromium/issues/list
https://bugzilla.mozilla.org/
https://bugs.webkit.org/

CHAPTER 13

How to Write a Grid System

Grid	systems	drastically	simplify	and	speed	up	web

development.	You	append	a	few	classes	to	your	HTML,	and

suddenly	you've	cut	out	90%	of	your	layout	CSS!

Grid	systems	abstract	away	the	complexities	of	the

underlying	CSS.	If	you're	working	on	a	team	of	people	who

aren't	as	flexbox-savy	as	you	are,	you	should	buy	them	a	copy

of	this	book.	☺	Barring	that,	your	teammates	can	use	a	grid

system	without	having	to	deeply	understand	the	technical

details.

The	major	downside	of	grid	systems	is	they	pollute	your	DOM

with	stylistic	classes.	Many	people	believe	that	writing

classes	that	are	purely	presentational	is	a	misuse	of	HTML

and	CSS,	a	point	I	wholeheartedly	agree	with.	However,	I

make	an	exception	for	grid	systems	because	they're	just	so

useful.

In	this	chapter,	you'll	learn	how	to	build	your	very	own

flexbox	grid	system	using	Sass.

The	Basics

If	you've	used	other	grid	systems,	such	as	960gs	or

Bootstrap's	grid,	you're	used	to	defining	things	in	terms	of	a

twelve-column	grid.	Since	you're	using	flexbox,	your	grid

system	will	cater	to	flexbox's	proportional	nature.	It	will

consist	of	four	major	classes:

Row	containers	contain	rows,	and	column	containers	contain

columns.	Easy	enough	to	remember,	right?

.row-container	{

		display:	flex;

		flex-direction:	column;

}

row-container•

column-container•

row•

column•

http://960.gs/
http://getbootstrap.com/examples/grid/

.column-container	{

		display:	flex;

		flex-direction:	row;

}

Wait,	why	flex-direction	set	to	column	for	the	row-

container?	Is	that	a	typo?	Nope!	If	you	want	row-container

to	contain	rows,	then	the	direction	of	the	container	needs	to

be	column.	It's	a	little	tricky	to	wrap	your	head	around,	but	I

promise	it's	easier	for	other	people	using	your	grid	system	to

think	about	it	in	those	terms.

Next,	you	need	to	write	the	row	and	column	classes.

Conceptually,	these	are	very	different	things.	However,	their

implementation	is	exactly	the	same.	The	only	reason	to

include	both	is	because	it	makes	it	easier	for	others	to	use

your	grid	system.

.row-container	>	.row,

.column-container	>	.column	{

		flex:	1	1	0px;

}

With	that,	you	can	build	equally-sized	columns	and	rows

without	writing	a	single	line	of	CSS!

<section	class="column-container">

		<div	class="column">One	Third</div>

		<div	class="column">One	Third</div>

		<div	class="column">One	Third</div>

</section>

<section	class="column-container">

		<div	class="column">One	Half</div>

		<div	class="column">One	Half</div>

</section>

...

Different-Sized	Columns

If	that's	all	your	grid	system	can	do,	it's	not	very	useful.	What

you	need	is	different-sized	columns.	You	can	accomplish	that

with	some	Sass	magic.

Sass	is	a	CSS	preprocessor	that	enhances	the	language	in

several	ways,	including	adding	variables,	control	structures

and	mixins.	Please	be	aware	Sass	code	won't	run	in	a	regular

browser;	see	Chapter	4	for	details	on	how	to	set	up	CodePen

or	CodeKit	to	compile	it.

$numbers:	(one,	two,	three,	four,	five,	six,

		seven,	eight,	nine,	ten,	eleven,	twelve);

@for	$index	from	1	through	length($numbers)	{

		$number:	nth($numbers,	$index);

		.row-container	>	.#{	$number	}-row,

		.column-container	>	.#{	$number	}-column	{

				flex:	$index,	$index,	0px;

		}

}

Just	like	that,	you	now	have	classes	for	one-column,	two-

column,	three-column	and	so	on.

http://sass-lang.com/

<section	class="column-container">

		<div	class="two-column">One	Half</div>

		<div	class="column">One	Fourth</div>

		<div	class="column">One	Fourth</div>

</section>

<section	class="column-container">

		<div	class="column">One	Sixth</div>

		<div	class="four-column">Two	Thirds</div>

		<div	class="column">One	Sixth</div>

</section>

A	Little	Sugar	on	Top

There's	one	more	extremely	useful	column	to	add:	an	auto-

column.	This	column	will	size	itself	to	the	size	of	its	content.

.row-container	>	.auto-row,

.column-container	>	.auto-column	{

		flex:	0	0	auto;

}

<section	class="column-container">

		<div	class="auto-column	gutter">

				<p>Auto	Column</p>

		</div>

		<div	class="column	gutter">

				<p>One</p>

		</div>

</section>

<section	class="column-container">

		<div	class="auto-column	gutter">

				<p>Auto	Column	with	More	Content</p>

		</div>

		<div	class="column	gutter">

				<p>One	Half</p>

		</div>

		<div	class="column	gutter">

				<p>One	Half</p>

		</div>

</section>

Gutters

Every	major	grid	system	supports	gutters,	the	space	between

the	items	in	the	grid.

Remember	back	to	chapter	2	when	we	used	 flex-basis	to	fix

the	sizes	for	the	gutters?	That's	really	hard	to	do	in	a	reusable

way	for	a	grid	system.	Instead,	you	can	apply	them	to	the

children	of	columns	and	rows.	This	is	much	simpler,	but	it

does	require	a	child	element	if	you	want	a	gutter.

$gutter-size:	20px	!default;

.gutter	>	*	{

		margin-left:	$gutter-size	/	2;

		margin-right:	$gutter-size	/	2;

}

The	!default	tells	Sass	that	the	gutter	size	is	a	default	value,

but	can	be	overridden.	This	makes	it	easy	to	reuse	the	grid

system	across	projects.

For	the	earlier	examples,	let's	place	the	column	contents	into

paragraphs	so	the	margins	can	be	applied.

<section	class="column-container">

		<div	class="column	gutter">

				<p>One	Third</p>

		</div>

		<div	class="column	gutter">

				<p>One	Third</p>

		</div>

		<div	class="column	gutter">

				<p>One	Third</p>

		</div>

</section>

...

Just	the	Beginning

There's	so	much	more	you	can	do	with	your	grid	system.	Play

around	with	it	and	see	what	features	you	can	add!

If	you'd	like	to	use	a	fully	fleshed	out	flexbox	grid	system,	try

mine:	Waffle.	Feel	free	to	submit	pull	requests!

https://github.com/LandonSchropp/waffle

CHAPTER 14

Minesweeper

If	you're	like	me,	you've	wasted	hours	of	your	life	clearing

squares	in	Minesweeper.	This	tricky	game	was	first

introduced	in	Windows	3.1,	and	has	been	a	procrastination

staple	ever	since.	Well,	it's	time	to	put	all	of	those	lost	hours

to	good	use.

In	this	lesson,	you're	going	to	build	the	classic	Minesweeper

layout	using	flexbox.	If	you	look	closely	at	the	layout,	you'll

notice	pieces	of	it	are	similar	to	other	layouts	you've	already

built.	Minesweeper	requires	most	of	the	skills	you've

acquired	in	the	course,	so	it's	a	good	opportunity	to	try	out

what	you've	learned!

Set	Up

In	order	to	build	the	layout,	you'll	need	to	break	it	apart	into

three	pieces:	the	menu	bar,	the	game	controls	and	the	game

board

It's	fairly	straightforward	to	represent	this	layout	with

HTML.	You'll	use	a	<nav>	for	the	menu	bar,	and	<div>

containers	for	the	controls	and	board.	You'll	place	the

controls	and	the	board	into	a	<section>	to	make	it	easier	to

add	the	border	and	padding	around	them.

<div	class="minesweeper">

		<nav>

				...

		</nav>

		<section	class="game">

				<div	class="controls">

						...

				</div>

				<div	class="board">

						...

				</div>

		</section>

</div>

You'll	also	include	a	few	styles	that	apply	to	the	layout.	I've

left	out	the	title	bar	for	simplicity.

*	{

		box-sizing:	border-box;

}

.minesweeper	{

		font-size:	20px;

		font-family:	sans-serif;		

		background-color:	#c0c0c0;

}

.game	{

		padding:	10px;

		border-top:	7px	solid	white;

		border-left:	7px	solid	white;

}

button	{

		padding:	0;

		border:	none;

		background-color:	transparent;

}

To	make	life	a	little	easier,	you'll	use	a	Sass	mixin	to	style	the

borders.	If	you're	not	comfortable	with	Sass,	don't	worry	too

much	about	this—it's	simply	a	more	concise	way	to	write	the

border	properties.

@mixin	border($size,	$top-left-color,

		$bottom-right-color)	{

		border-top:	$size	solid	$top-left-color;

		border-right:	$size	solid

				$bottom-right-color;

		border-bottom:	$size	solid

				$bottom-right-color;

		border-left:	$size	solid	$top-left-color;

}

The	Board

For	the	board,	you	want	a	ten-by-ten	grid	of	buttons.	You'll

use	the	wrapping	technique	from	Chapter	9	to	achieve	this.

<div	class="board">

		<button	class="space"></button>

		<button	class="space"></button>

		<button	class="space"></button>

		...

		<button	class="space"></button>

</div>

Before	you	can	wrap	the	buttons,	you	need	to	set	the	size	of

the	board.	Each	cell	will	be	32	pixels	by	32	pixels,	and	the

game	has	a	6	pixel	border,	so	set	the	width	and	height	to	10

×	32px	+	2	×	6px,	which	comes	out	to	332px.

.board	{

		@include	border(6px,	#808080,	white);

		width:	332px;

		height:	332px;

}

To	get	those	spaces	to	wrap,	make	the	board	a	flex	container,

set	its	flex-wrap	property	and	set	the	width	and	height	of

the	spaces.

.board	{

		@include	border(6px,	#808080,	white);

		width:	332px;

		height:	332px;

		display:	flex;

		flex-wrap:	wrap;

}

.space	{

		@include	border(4px,	white,	#808080);

		width:	32px;

		height:	32px;

}

The	Controls

Next	up	are	the	game	controls.

<div	class="controls">

		<img	class="number"	src="numbers10.svg"

				alt="Score">

		<button	type="button"	class="reset">

				

		</button>

		<img	class="number"	src="numbers29.svg"

				alt="Time">

</div>

Make	the	controls	a	flex	container,	then	style	the	number

images	and	the	reset	button.

.controls	{

		display:	flex;

}

.number	{

		@include	border(3px,	#808080,	white);

		background-color:	#030303;

}

.reset	{

		@include	border(5px,	white,	#808080);

		width:	48px;

		height:	48px;

}

You	can	add	space	between	the	numbers	and	the	reset	button

by	using	the	justify-content	property.

.controls	{

		display:	flex;

		justify-content:	space-between;

}

Finally,	style	the	controls	container.

.controls	{

		@include	border(4px,	#808080,	white);

		display:	flex;

		justify-content:	space-between;

		margin-bottom:	10px;

		padding:	10px;

}

The	Menu	Bar

The	last	piece	of	the	layout	is	the	menu	bar.

<nav>

		<button>Game</button>

		<button>Help</button>

</nav>

You	could	use	flexbox	to	style	the	menu	bar,	but	you	really

don't	need	it.	The	<button>'s	default	display	of	inline-

block	is	enough	to	give	the	effect	you	want.

All	you	need	to	do	is	add	a	margin	around	the	buttons.	While

you're	at	it,	use	the	first-letter	pseudo-element	to

underline	the	first	letter	of	the	menu	items.

nav	button	{

		margin:	6px	10px;

}

nav	button::first-letter	{

		text-decoration:	underline;

}

Game	Over

That's	it!	You've	taken	the	flexbox	positioning,	columns	and

wrapping	skills	you've	learned	from	the	previous	lessons	and

used	them	to	build	something	completely	different.	That's

really	what	flexbox	is—a	collection	of	simple	tools	that	can

be	combined	to	create	amazing	layouts.

This	chapter	is	a	good	example	of	breaking	down	a	hard

problem	into	simpler	pieces.	Focusing	on	individual	sections

until	the	whole	layout	is	complete	is	how	most	flexbox

development	is	done	in	real	projects.

For	an	extra	JavaScript	challenge,	try	turning	the

Minesweeper	layout	into	a	working	game.	Let	me	know	if	you

do!

CONCLUSION

That's	the	end	of	the	book!	I	hope	you've	enjoyed	reading	it

as	much	as	I	have	writing	it.

You	can	now	consider	yourself	a	seasoned	flexbox	pro.

You've	learned	all	of	the	major	flexbox	properties,	and	you've

seen	flexbox	used	in	real-world	scenarios.	Hopefully,	you've

also	started	to	apply	flexbox	to	your	day-to-day	web

development.

If	you'd	like	to	learn	a	little	more	about	flexbox,	I'd

recommend	these	resources:

If	you	want	to	keep	up	with	what	I'm	working	on,	follow	me

on	Twitter	at	@LandonSchropp.

Thanks	again	for	reading,	and	happy	flexboxing!

CSS-Tricks:	A	Complete	Guide	to	Flexbox:	This	is

a	fantastic	resource	with	explanation	of	all	of	the

flexbox	properties.

•

Mozilla	Developer	Network	(MDN):	This	is	my	go-

to	CSS	reference.	Type	in	any	flexbox	property	and

you'll	see	a	list	of	all	of	the	possible	values	and

what	they	do.

•

W3	Flexbox	Specification:	This	is	the	canonical

specification	browsers	use	to	implement	flexbox.

•

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://developer.mozilla.org/en-US/
http://www.w3.org/TR/css-flexbox-1/
https://twitter.com/LandonSchropp

	Unraveling Flexbox
	Introduction
	What's in the Book?
	Chapter 1: Getting Dicey
	Chapter 2: Crafting Twelve-Column Layouts
	Chapter 3: Building a Video Player
	Chapter 4: Say Goodbye to Vendor Prefixes
	Chapter 5: Breaking Free From Twelve-Column Layouts
	Chapter 6: Perfect Pricing
	Chapter 7: Flexbox Forms
	Chapter 8: Responsive Design
	Chapter 9: Wrapping Like a Boss
	Chapter 10: Progressive Enhancement
	Chapter 11: Ordering
	Chapter 12: Cross-Browser Testing
	Chapter 13: How to Write a Grid System
	Chapter 14: Minesweeper

	Code Examples
	Acknowledgements
	Enough Chitchat
	Chapter 1: Getting Dicey
	The First Face
	Getting Trickier
	Horizontal and Vertical Nesting
	Wrapping Up
	Chapter 2: Crafting Twelve-Column Layouts
	Setting Up the Container
	Flexin' It Up
	All About That Basis
	More Flex Basis
	Shorthand
	That's It!
	Chapter 3: Building a Video Player
	Lights, Camera, Action!
	The Container
	The Progress Controls
	The Top Controls
	Fin
	Chapter 4: Say Goodbye to Vendor Prefixes
	Writing Vanilla Flexbox Sucks
	Old Versions of Flexbox
	Vendor Prefixes
	Putting Them Together

	Autoprefixer to the Rescue!
	CodePen
	CodeKit
	Gulp, Grunt and Other Frameworks

	What If You Can't Use Autoprefixer?
	Don't Worry, Be Happy
	Chapter 5: Breaking Free From Twelve-Column Layouts
	N-Column Layouts
	The Golden Ratio
	Fixed-Sized Items
	Vertical Layouts
	All Done
	Chapter 6: Perfect Pricing
	The Columns
	Features
	Call to Action Buttons
	Making It Stand out
	Money in the Bank
	Chapter 7: Flexbox Forms
	Credit Card Form
	Multi-Buttons
	Attached Buttons
	Final Thoughts
	Chapter 8: Responsive Design
	Solutions without Media Queries
	Mobile-First
	Fill Up the Provided Space
	Maximum and Minimum Sizes

	Breakpoints
	That's All
	Chapter 9: Wrapping Like a Boss
	A Simple Example
	Different Shapes and Sizes
	Align Content
	Direction Matters Too
	Wrapping Up
	Chapter 10: Progressive Enhancement
	A Progressive Agenda
	Modernizr
	Last Resort
	Examples
	Going Forward
	Chapter 11: Ordering
	Flexbox to the Rescue
	Why Bother?
	The flex-direction Property
	Order Up
	Chapter 12: Cross-Browser Testing
	Deciding What to Support
	Testing
	Desktop Browsers
	Mobile Browsers
	BrowserStack

	What To Do When You Find a Flexbox Bug
	Flexbugs
	StackOverflow
	Browser Bug Tracker

	All Set
	Chapter 13: How to Write a Grid System
	The Basics
	Different-Sized Columns
	A Little Sugar on Top
	Gutters
	Just the Beginning
	Chapter 14: Minesweeper
	Set Up
	The Board
	The Controls
	The Menu Bar
	Game Over
	Conclusion

